Advanced search
Start date

Relaxing effect of nitroxyl donor Angelis Salt in rats cava vein

Full text
Fabíola Cristina Zuchi
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Lusiane Maria Bendhack; Gerson Jhonatan Rodrigues; Roberto Santana da Silva
Advisor: Lusiane Maria Bendhack

Nitroxyl (HNO), the one electron reduced and protonated form of nitric oxide (NO), displays different chemical characteristics compared to its redox sibling, with different pharmacological actions and therapeutic benefits. Together, NO and HNO seem to have an integral role in the control of vascular tone. The production and/or bioavailability of HNO must be preserved during oxidative stress, different from what happens to NO. In addition, HNO also has a potential antioxidant activity, thus acting as a cytoprotector and displaying desirable characteristics in the treatment of cardiovascular diseases. The present study aimed to study the relaxing effect of HNO released from Angeli\'s salt (AS) and to investigate the cellular mechanisms involved in this effect in rat vena cava. We found that AS increased cytosolic concentration of HNO, measured by fluorescent probe DAF-2DA by flow cytometry in human umbilical vein cells (HUVECs). HNO increase was abolished by HNO scavenger (L-cysteine), but it did not change in presence of the reactive oxygen species (ROS). AS promoted concentration-dependent relaxation in aorta and vena cava of rats with endothelium. However, the relaxation induced in vena cava was lower than the maximum relaxation (ME) induced in aorta. Analyzing the time necessary for the compound to induce ME, we observed that the effect in function of time was also significantly different between the vessels. In rat aorta, the maximum time was 50 seconds and in vena cava was 20 minutes. HNO conversion to NO by superoxide dismutase (SOD) was not required for signaling pathway activation, since AS relaxation was reduced in presence of L-cysteine, but it was not modified in presence of SOD inhibitor (DDC) or NO scavenger (Hydroxocobalamin). SA-induced relaxation was reduced by L-NAME and ODQ, indicating the involvement of NO synthase and soluble guanylyl cyclase (sGC), in the relaxation. Non-selective blocker of K+ channels (TEA) and superoxide anion (O2¯) scavenger (Tiron) did not modify the relaxation induced by AS when concentration-effect curve was performed. However, both inhibited relaxation when we performed the temporal effect compound study. Moreover, in the presence of NADPH oxidase inhibitor (Apocynin) relaxation was also reduced. Thus, K+ channels, O2¯ and NADPH oxidase seem to contribute to AS relaxation. Apparently there is no participation of protein kinase G (GK), sarcoplasmic reticulum Ca2+ ATPase (SERCA) or voltage-dependent Ca2+ channels in relaxation signaling pathway. Also, low concentrations (0.1 mmol/L) of AS presented antioxidant effect, whereas in high concentrations (1 mmol/L) it acted as a prooxidant. The main ROS involved in AS prooxidant effect was O2¯, which was produced, at least in part, by the action of NADPH oxidase, since the increase of ROS production by AS was inhibited by Tiron and reduced in the presence of Apocynin. These data were obtained by fluorescence DHE probe by flow cytometry in HUVECs. Despite the production of ROS in high concentrations, the compound did not show toxicity. (AU)

FAPESP's process: 13/15249-4 - Relaxing effect of nitroxyl donor Angelis salt in rats cava vein
Grantee:Fabíola Cristina Zuchi
Support Opportunities: Scholarships in Brazil - Master