Advanced search
Start date
Betweenand


Temporal unsupervised neural networks for identification and control of dynamical systems

Full text
Author(s):
Guilherme de Alencar Barreto
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Aluizio Fausto Ribeiro Araújo; Luiz Pereira Calôba; Fernando Antonio Campos Gomide; João Cesar Moura Mota; Takashi Yoneyama
Advisor: Aluizio Fausto Ribeiro Araújo
Abstract

Neural network research is currently witnessing a significant shift of emphasis towards temporal coding, which uses time as an extra degree of freedom in neural representations. Temporal coding is passionately debated in neuroscience and related fields, but in the last few years a large volume of physiological and behavioral data has emerged that supports a key role for temporal coding in the brain [BALLARD et al. (1998)]. In neural networks, a great deal of research is undertaken under the topics of nonlinear dynamics, oscillatory and chaotic networks, spiking neurons, and pulse-coupled networks. Various information processing tasks are investigated using temporal coding, including pattern classification, learning, associative memory, inference, motor control, dynamical systems identification and control, and robotics. Progress has been made that substantially advances the state-of-the-art of neural computing. In many instances, however, it is unclear whether, and to what extent, the temporal aspects of the models contribute to information processing capabilities. This thesis seeks to present, in a clear and collective way, the main issues and results regarding the proposal of two unsupervised neural models, emphasizing how these networks make use of temporal coding to perform better in the task they are engaged in. The first model, called Competitive Temporal Hebbian (CTH) network, is applied specifically to learning and reproduction of trajectories of a PUMA 560 robot. The CTH model is a competitive neural network whose main characteristic is the fast learning, in just one training epoch, of multiple trajectories containing repeated elements. The temporal relationships within the task, represented by the temporal order of the elements of a given trajectory, are coded in lateral synaptic trained with hebbian learning. The computational properties of the CTH network are assessed through simulations, as well ) as through the practical implementation of a distributed control system for the real PUMA 560 robot. The CTH performs better than conventional look-up table methods for robot trajectory learning, and better than other neural-based techniques, such as supervised recurrent networks and bidirectional associative memory models. The second model, called Self-Organizing NARX (SONARX) network, is based on the well-known SOM algorithm by KOHONEN (1997). From the computational view-point, the properties of the SONARX model are evaluated in different application domains, such as prediction of chaotic time series, identification of an hydraulic actuator and predictive control of a non-linear plant. From the theoretic viewpoint, it is shown that the SONARX model can be seen as an asymptotic approximator for nonlinear dynamical mappings, thanks to a new neural modelling technique, called Vector-Quantized Temporal Associative Memory (VQTAM). This VQTAM, just like the hebbian learning rule of the CTH network, is a temporal associative memory techniques. The SONARX network is compared with supervised NARX models which based on the MLP and RBF networks. For all simulations, in each one of the forementioned application domains, the SONARX network had a similar and sometimes better performance than those observed for standard supervised models, with the additional advantage of a lower computational cost. The SONARX model is also compared with the CTH network in trajectory reproduction tasks, in order to contrast the main differences between these two types of temporal associative learning models. In this thesis, it is also proposed a mathematical taxonomy, based on the state-space representation of dynamical systems, for classification of unsupervised temporal neural networks with emphasis in their computational properties. The main goal of this taxonomy is to unify the description of dynamic neural models, ) facilitating the analysis and comparison of different architectures by constrasting their representational and operational characteristics. Is is shown how the CTH and SONARX models can be described using the proposed taxonomy. (AU)