Advanced search
Start date
Betweenand


Detection and classification of objects in images for vehicle tracking

Full text
Author(s):
Raphael Montanari
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Roseli Aparecida Francelin Romero; Valdir Grassi Junior; Flavio Tonidandel
Advisor: Roseli Aparecida Francelin Romero
Abstract

Robotics is a multidisciplinary area that continually grows with the contribution of scientific advancement and frequent increase in computational hardware power. Research in robotics are divided into several lines of investigation. Computer vision is one of the research areas of great interest due to the abundant variety of methods and techniques offered. One of the biggest challenges for the robots is to discover and analyze the environment in which they are inserted. Among the main sensors that can be used, digital cameras offer good benefits: they can be lightweitgh, small and cheap, which are fundamental characteristics for some robots. This work undertakes the development and analysis of a computer vision system to track vehicles by detecting and classifying segments in imaging systems. To achieve the objectives, methods on image information extraction, visual attention models and bioinspired learning models were studied for detection and classification of vehicles. For the task of visual attention the INVT and VOCUS2 models were used to generate saliency maps, while for classification was applied the bag-of-features method and finally to track the specified vehicle during its journey on a highway, it was adopted CamShift technique joint with a Kalman filter. The developed system was implemented with an aerial robot and tested with real images containing different vehicles on a highway and the results of classification and tracking obtained were very satisfactory. (AU)

FAPESP's process: 12/14725-4 - Computer vision system for 3D mapping and tracking of objects
Grantee:Raphael Montanari
Support Opportunities: Scholarships in Brazil - Master