Advanced search
Start date
Betweenand


Daphnia similis phosphatases as biomarkers of agrochemicals ecotoxicity

Full text
Author(s):
Miriam Dantzger
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Hiroshi Aoyama; Vera Lucia Scherholz Salgado de Castro; Willian Fernando Zambuzzi
Advisor: Hiroshi Aoyama; Claudio Martin Jonsson
Abstract

Daphnia similis, a microcrustacean of the cladoceran's family, is widely found in freshwater environment. Because of its cosmopolitan nature and sensitivity, this organism is recommended by national and international protocols as a biomarker in ecotoxicity analyses. Agrochemicals, industrial effluents and metals are daily released in the rivers, impairing local living systems and causing toxicological effects on aquatic organisms. In order to contribute with enzymatic biomarkers normalization, our purpose was to evaluate D. similis phosphatases activities in the presence of several pollutants. Specifically, our aim was: a) to analyze in vitro effects of metals and agrochemicals on D. similis alkaline and acid phosphatases activities, in order to select the more pollutants-sensitive enzyme; b) to perform more detailed in vitro studies with those more sensitive enzyme and selected pollutants; c) to analyze the in vivo activity of this enzyme at sub-lethal levels of pollutants, derived from acute toxicity assays. In this way, in vitro effects of several pollutants (metals and pesticides) were evaluated on total acid phosphatase (TAP) and alkaline phosphatase activities. Our results showed that TAP presented higher alterations in relation to alkaline phosphatase when exposed to in vitro pollutants, from which the metals showed more remarkable effects. The metals Al3+, Se3+ and Mo6+ exhibited higher inhibitory effects, whereas permethrin and Cd2+ presented activator effects. The activation energy of the reaction catalyzed by TAP, by using p-nitrophenylphosphate as substrate, was decreased from 13 to 10 kcal.mol-1, in the presence of 0,5mM Cd2+. IC50 (concentration of metal that promotes 50% of enzyme inhibition) values for Al3+, Se3+ and Mo6+ were determined to be: 1.23 mM, 0.54 mM e 0.9 µM, respectively, in the TAP catalyzed reaction. The TAP inhibition was of non-competitive type for Al3+, and competitive for Se3+ and Mo6+, with inhibition constant (Ki) values ranging 0.9 mM, 0.62 mM and 1.32 µM, respectively. In the 48 hours acute toxicity assays with D. similis, permethrin presented higher effect in relation to the other pollutants, with the following toxicity order (mM): Permethrin (0.000056) > Cd2+ (0.00139) > Se4+ (0.004) > Mo6+ (0.024) > Al3+ (0.072). The inhibition order of D. similis TAP activity exposed to 48 hours EC50 was similar to the acute toxicity values (Cd2+ > permethrin > Al3+ > Mo6+), suggesting a relationship between enzymatic activity alteration and the pollutants toxicity. Further, we decided to evaluate the effects of binary metals mixtures of Al3+, Cd2+, Mo6+ and Se4+ on the acute toxicity assays, it was observed that only Al3+ + Cd2+ (S = 0.588) and Al3+ + Mo6+ (S = 0.951) exhibited synergic effects on D. similis, evidenced by the S<1 values; at the same conditions the mixture Al3+ + Se4+ did not show significant alterations. The TAP activity inhibition order for EC50 concentration and its respective percentuals were: Al3+ + Cd2+ (90%) > Al3+ + Mo6+ (78%) > Se4+ + Cd2+ (72%) > Mo6+ + Cd2+ (32%). On the other hand, the mixture Se4+ + Mo6+ presented 50% enzyme activation at the same toxicity levels analyzed for the other mixtures. These results emphasize the need to complement acute toxicity tests with pollutants mixtures, using enzymatic biomarkers, such as TAP. In conclusion, TAP, through the alteration of its in vivo activity, could be used as a lethal level toxicity biomarker for the permethrin and Al3+, and at sub-lethal levels for Cd2+ and Se4+, predicting possible environmental impact (AU)