Advanced search
Start date
Betweenand


Effects of 2-AG, through monoacylglicerol lipase inhibition, in a murine modelo f acute lung injury LPS-induced

Full text
Author(s):
Carolina Costola de Souza Pavani
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina Veterinária e Zootecnia (FMVZ/SBD)
Defense date:
Examining board members:
João Palermo Neto; Luciano Freitas Felicio; Ana Paula Ligeiro de Oliveira; Frederico Azevedo da Costa Pinto
Advisor: João Palermo Neto
Abstract

Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG), is mediated by monoacylglycerol lipase (MAGL). The JZL184, is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors, and has shown anti-inflammatory effects. Acute lung injury (ALI) and its most severe form the acute respiratory distress syndrome (ARDS), in humans, are lung diseases, characterized by bilateral pulmonary infiltrate with neutrophils accumulation. The sepsis is the most common cause of ALI / ARDS; approximately 40% of patients with sepsis have also ALI or ARDS. ALI and ARDS are severe syndromes associated with mortality 40% exceeding rates. Considering that there is no cure for ARDS/ALI, we used a ALI murine model to evaluate if the MAGL inhibition was able to alleviating the inflammatory symptoms or even promote the cure. For this, factors that promote migration of leukocytes into the lungs and the tissue damage were analyzed. Still, to assess whether LPS and / or JZL184 promoted changes in the central nervous system, the locomotor activity and ability to adapt were evaluated in the open field end the anxiety in the plus maze. Were also evaluated the glucocorticoid levels in the serum, and the hypothalamic levels of cytokines. Thus, the JZL184 was used intraperitoneally, 60 minutes after LPS was intranasally instilled and 6, 24 and/or 48 hours, after induction of ALI, analyzes were performed. It was observed that the MAGL inhibition decreased the leukocyte migration into the lungs as well as the vascular permeability and the lung damage. JZL184 also reduced the cytokine and chemokine levels and the vascular extravasation in the BAL, the MPO activity in the lungs and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281, a selective CB1 receptor antagonist, and the AM630, a selective CB2 receptor antagonist, reduced or blocked the anti-inflammatory effects previously described for JZL184. The LPS and the JZL184 did not promote unhealthy behavior and did not change the parameters of anxiety. However, LPS and/orJZL184 increased gene expression of hypothalamic cytokines. It was concluded that MAGL inhibition produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 cannabinoid receptors. The MAGL inhibition in the future may be a therapeutic tool for the pulmonary inflammation treatment (AU)

FAPESP's process: 11/10181-7 - "EFFECTS OF 2-AG, THROUGH MONOACYLGLYCEROL LIPASE INHIBITION, IN A MURINE MODEL OF ACUTE LUNG INJURY LPS-INDUCED"
Grantee:Carolina Costola de Souza Pavani
Support Opportunities: Scholarships in Brazil - Doctorate