Advanced search
Start date
Betweenand


Similarity-based time series prediction

Full text
Author(s):
Antonio Rafael Sabino Parmezan
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Gustavo Enrique de Almeida Prado Alves Batista; Huei Diana Lee; Agma Juci Machado Traina
Advisor: Gustavo Enrique de Almeida Prado Alves Batista
Abstract

One of the major challenges in Data Mining is integrating temporal information into process. This difficulty has challenged professionals several application fields and has been object of considerable investment from scientific and business communities. In the context of Time Series prediction, these investments consist majority of grants for designed research aimed at adapting conventional Machine Learning methods for data analysis problems in which time is an important factor. We propose a novel modification of the k-Nearest Neighbors (kNN) learning algorithm for Time Series prediction, namely the kNN - Time Series Prediction with Invariances (kNN-TSPI). Our proposal differs from the literature by incorporating techniques for amplitude and offset invariance, complexity invariance, and treatment of trivial matches. These three modifications allow more meaningful matching between the reference queries and Time Series subsequences, as we discuss with more details throughout this masters thesis. We have performed one of the most comprehensible empirical evaluations of Time Series prediction, in which we faced the proposed algorithm with ten methods commonly found in literature. The results show that the kNN-TSPI is appropriate for automated short-term projection and is competitive with the state-of-the-art statistical methods ARIMA and SARIMA. Although in our experiments the SARIMA model has reached a slightly higher precision than the similarity based method, the kNN-TSPI is considerably simpler to adjust. The objective and subjective comparisons of statistical and Machine Learning algorithms for temporal data projection fills a major gap in the literature, which was identified through a systematic review followed by a meta-analysis of selected publications. The 95 data sets used in our computational experiments, as well all the projections with respect to Mean Squared Error, Theils U coefficient and hit rate Prediction Of Change In Direction are available online at the ICMC-USP Time Series Prediction Repository. This work also includes contributions and significant results with respect to the properties inherent to similarity-based prediction, especially from the practical point of view. The outlined experimental protocols and our discussion on the usage of them, can be used as a guideline for models selection, parameters setting, and employment of Artificial Intelligence algorithms for Time Series prediction. (AU)

FAPESP's process: 13/10978-8 - Similarity-based Time Series Prediction
Grantee:Antonio Rafael Sabino Parmezan
Support Opportunities: Scholarships in Brazil - Master