Advanced search
Start date
Betweenand


Numerical simulation of complex viscoelastic multiphase flows

Full text
Author(s):
Rafael Alves Figueiredo
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
José Alberto Cuminato; Manuel António Moreira Alves; Roberto Federico Ausas; Gilmar Mompean Munhoz da Cruz; Cássio Machiaveli Oishi
Advisor: José Alberto Cuminato
Abstract

Industrial applications involving multiphase flow are numerous. The improvement of some of these processes can result in a major technological leap with significant economic impact. The numerical study of these applications is essential because it provides accurate and more detailed information than conducting experiments. A challenge is the numerical study of high viscoelastic multiphase flows due to instabilities caused by the high elastic tension, large deformations and even topological changes in the interface. Thus the numerical investigation of this problem requires a robust formulation. In this study a new two-phase solver involving complex fluids is presented, with particular interest in the solution of highly elastic flows of viscoelastic fluids. The proposed formulation is based on the volume-of-fluid method (VOF) to interface representation and continuum surface force algorithm (CSF) for the balance of forces in the interface. The curvature and interface advection are calculated via geometric methods to ensure the accuracy of the results. Stabilization methods are used when critical Weissenberg numbers are found due to the famous high Weissenberg number problem (HWNP). The projection method combined with an implicit method for the solution of the momentum equation are discretized by a finite difference scheme in a staggered grid. Benchmark test problems are solved in order to access the numerical accuracy of different levels of physical complexities, such as the dynamic of the interface and the role of fluid rheology. In order to demonstrate the ability of the new resolver, two-phase transient problems involving viscoelastic fluids have been solved, theWeissenberg effect problem and the extensional rheometer (CaBER). The Weissenberg effect problem or rod-climbing effect consists of a rod that spins inside of a container with viscoelastic fluid and due to the elastic forces the fluid climbs the rod. The results were compared with numerical and experimental data from the literature for small angular velocities. Moreover results obtained for high angular velocities are presented using the Oldroyd-B model, which showed high climbing heights. Critical values of the angular speed have been identified. For values above a critical level were observed the occurrence of elastic instabilities caused by the combination of elastic tension, interfacial curvature and secondary flows. To our knowledge, numerically these instabilities were never captured before. The CaBER consists of the behavior and collapse of a viscoelastic fluid filament formed between two parallel plates due to capillary forces. This experiment involves considerable difficulties, among which we can highlight the great influence of the capillary forces and the difference of the length scales in the flow. In much of the results found in the literature, the CaBER is solved by simplified models. The results were compared with results reported in the literature and theoretical solutions, which showed remarkable accuracy. (AU)

FAPESP's process: 11/09194-7 - Numerical simulation of the Weissenberg effect
Grantee:Rafael Alves Figueiredo
Support Opportunities: Scholarships in Brazil - Doctorate