Advanced search
Start date
Betweenand


Evolution of mating systems in stingless bees (Apidae, Meliponini)

Full text
Author(s):
Ayrton Vollet Neto
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Vera Lucia Imperatriz Fonseca; Eduardo Andrade Botelho de Almeida; Astrid de Matos Peixoto Kleinert; Rodolfo Jaffé Ribbi
Advisor: Vera Lucia Imperatriz Fonseca
Abstract

The mating systems of social bees is intriguing. Queens mate within a narrow time window very early in their lives, storing male sperm for their entire lifespan. In bumblebees (Bombini) and stingless bees (Meliponini), queens usually mate with a single male (monandry), while the queens of Apis species (Apini) mate with several males (polyandry). Several hypothesis have been proposed to understand the benefits of the extreme polyandry of honey bees. However, very little have been done in order to understand the equally intriguing selective forces that make such a diverse group as stingless bees as monandrous. In the present study we investigate how the selective force imposed by the chances of producing diploid males (a natural consequence of sex determination system of Hymenoptera) can affect the mating system of the Brazilian stingless bee Scaptotrigona depilis. In particular, queens that make a matched mating for the sex locus (i.e., mating with a male with the same sex allele) will have reduced fitness because queens are executed when producing 50% of diploid males amongst her diploid offspring. Mating with more males increase the chances of a matched mating, but reduces the proportion of diploid males on their brood. By manipulating the brood combs of experimental colonies, we tested whether queens with smaller proportions of diploid males (25%) will have mortality rates similar to queens in colonies with 0% or 50% diploid males. For that, we obtained queens producing diploid males and studied details of diploid males biology, in particular their sperm viability and morphology, and their behaviour out of their mother colonies (Chapter 1). We verified how prevalent queen execution behaviour under diploid male production is on this species, and the possible proximate mechanisms that trigger this behaviour (Chapter 2). Finally, we verified whether queen mortality in colonies with lower proportion of diploid males (simulating multiple mating) is closer to colonies with 50% or 0% of diploid males (Chapter 3). We verified that diploid males of S. depilis are viable and can join reproductive aggregations. Their sperm cells have the same viability of haploid males, but have longer sperm head and tail cells. Queens are executed in the presence of 50% of diploid males, and this behaviour is very prevalent on the studied population, with 100% of queen death (n=20). The cuticular hydrocarbon chemical profile of diploid males is quantitatively different from haploid males, suggesting that workers could use it as a signal for queen execution. However, sperm count of newly mated queens and one-year-old queens showed that sperm depletion might affect queen lifespan. This suggests that the signal for queen execution could also be related to a high number of males emergence, as a signal of queen sperm depletion, instead of male ploidy. Queens mortality in colonies with 25% of diploid males was similar to queens in colonies with 50%. This indicates that double mating is selected against regarding this selective pressure, since mating twice will increase the chances of a matched mating and queen mortality will be the same as single mated queens. (AU)

FAPESP's process: 12/11144-0 - Evolution of mating systems in stingless bees (Apidae, Meliponini)
Grantee:Ayrton Vollet Neto
Support Opportunities: Scholarships in Brazil - Doctorate