Effect of quarantine heat treatment on quality and postharvest physiology of papaya
EVALUATION OF METHYL JASMONATE IN ANTIOXIDANT CAPACITY AND POST-HARVEST CONSERVATI...
![]() | |
Author(s): |
Evellyn Couto Oliveira Resende
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Piracicaba. |
Institution: | Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC) |
Defense date: | 2016-11-28 |
Examining board members: |
Angelo Pedro Jacomino;
Ricardo Alfredo Kluge;
Giuseppina Pace Pereira Lima;
Poliana Cristina Spricigo
|
Advisor: | Angelo Pedro Jacomino |
Abstract | |
Papaya is a climacteric fruit whose transformations resulting from ripening occur rapidly after harvest and are triggered by the production of ethylene and increased respiration, being a very perishable fruit. The use of technologies such as heat treatment and cooling is necessary because they eliminate eggs and/or larvae of fruit fly and control the microorganisms\' growth, increasing the shelf life of this fruit. However, they can cause changes in the processes of maturation and damage in the plasma membrane integrity. Thus, the project aims to study the physiology, biochemistry, quality and papaya postharvest preservation after application of hydrothermal quarantine treatment and refrigerated storage. Golden papaya in maturity stage 1 were divided into two batches, one being subjected to hydrothermal quarantine treatment to 47 °C ± 1 °C for 20 minutes, followed by immersion in cold water to 11 °C ± 1 °C for the same period and the other lot used as a control (no hydrothermal treatment). Part of the fruits were stored at 22 ± 1 °C and 85 ± 5% RH for 7 days and some at 11 ± 1 °C and 85 ± 5% RH for 20 days, followed by storage at 22 ± 1 °C and 85 ± 5 % RH for 3 days. The papayas were evaluated with respect to biochemical and physiological aspects and organoleptic characteristics. We observed that the respiratory rate, ethylene production, the ascorbic acid content and the accumulated loss of fresh weight decreased in heat-treated fruit, especially when they are stored under refrigeration. Sensory analysis showed that the heat treated fruit were preferred in taste and texture and decrease the amount of linalool present in papayas subjected to cold storage showed that the cold negatively affected the scent. The enzymes analyzed did not possess a pattern of activity during the evaluation days. Thus, future studies on the expression of genes related to the ripening papayas are needed for a better understanding of the solutions when applying the hydrothermal quarantine treatments and refrigerated storage. (AU) | |
FAPESP's process: | 13/10561-0 - Effect of quarantine heat treatment on quality and postharvest physiology of papaya |
Grantee: | Evellyn Couto Oliveira Resende |
Support Opportunities: | Scholarships in Brazil - Doctorate |