Advanced search
Start date
Betweenand


Condensation study of halogen refrigerants and mixtures with lubricant oil in microchannel tubes

Full text
Author(s):
Williams Gonzales Mamani
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
José Maria Saiz Jabardo; Alberto Hernandez Neto; Marcos de Mattos Pimenta; Woodrow Nelson Lopes Roma; Celso Luiz da Silva
Advisor: José Maria Saiz Jabardo
Abstract

This project involves a theoretical-experimental study of heat transfer and pressure drop in condensation and single phase flow of halogen refrigerants in microchannel tubes. The tests include the pure refrigerant R-134a and quasi azeotropic mixture R-410A. The microchannel tubes tested include one with square ports of Dh = 1,214 mm and other with circular port of Dh = 1,494 mm. The subcooled liquid tests considered the mass velocities of 390 to 1360 kg/sm2, the saturation temperature of 40ºC and subcooled of 10ºC. The condensing tests considered a constant heat flux of 5 kW/m2, vapor quality of 0,15 to 0,9, mass velocities of 410 to 1135 kg/sm2, saturation temperature of 40 to 50ºC and oil-refrigerant mixtures with oil mass concentrations of 0,25 and 0,45%. For each test condition was evaluated the coefficient of heat transfer and frictional pressure drop in the microchannel tube. The single phase results agree with typical correlations used in conventional tubes to evaluate the heat transfer and pressure drop in turbulent flow, even though the most of experimental date are 12% higher. The most of flow patterns in condensation were identified as annular using the flow patterns maps available on literature. This behavior was verified through pressure drop results, which show exclusive dependence on Martinelli Parameter. The heat transfer results show that the main heat transfer mechanism was convective, typical in annular flow. The results of condensation were correlated from empirical approachs using the Martinelli parameter and the equivalent mass velocity concept. And, also a semi-empirical approach modeling the annular flow to evaluate the mechanism of heat transfer through the liquid film around the wall of the tube. Finally, the experimental results and the results obtained through the models were compared with correlations referred to microchannels available on the literature. (AU)