Advanced search
Start date
Betweenand


The influence of olfactory stimulation in the development of limbic seizures in rats

Full text
Author(s):
Polianna Delfino Pereira
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Norberto Garcia Cairasco; Lauro Wichert Ana; Katia Lin
Advisor: Norberto Garcia Cairasco
Abstract

One of the most widely used experimental models to study temporal lobe epilepsy (TLE) is the kindling by electrical daily stimulation of the amygdala, the conventional kindling. A rapid and effective alternative to this model is rapid electrical kindling, also capable of generating limbic seizures, but with 10 electrical stimuli applied per day for 2 days. On the 3rd day an additional electrical stimulus is applied, the 21st stimulus, when antiepileptic drugs can be tested or mechanisms of plasticity and memory can be studied. Among the main areas activated in limbic seizures are the amygdaloid complex, the hippocampal formation, piriform cortex and adjacent neocortices. The involvement of the olfactory structures in TLE is old and studies indicate that exposure to an olfactory stimulus is capable to suppress or inhibit or induce the occurrence of seizures. All the clinical and experimental evidences provide scientific support for the hypothesis that the olfactory stimulation with 2,5-Dihydro-2,4,5-trimethylthiazoline (TMT), a powerful chemical substance derived from fox feces which biologically represents the \"predator smell can influence the seizures process evoked by electrical stimulation of the amygdala. The overall objective of this study was to evaluate the influence of olfactory stimulation with TMT in seizures of Wistar rats subjected to rapid electrical kindling of the amygdala. Therefore, the chemical parameters of TMT were evaluated, as well as behavioral responses of naive male Wistar rats exposed to the olfactory stimulus with different concentrations of TMT. Other group of rats was electrically stimulated in the amygdaloid complex, following the protocol of rapid electrical kindling and the electroencephalographic recordings (EEGraphic) obtained from the piriform cortex, hippocampal formation in addition to the amygdaloid complex. After scorched the animals were exposed to TMT or distilled water, prior to the 21st electrical stimulation. Subsequently the cerebral tissue was processed (perfused, cryoprotected, frozen and sliced) and then processed for Nissl and Fluoro-Jade C histochemistry (FJC, a marker of neurodegeneration). The behavioral responses were analyzed by using the Severity Index for Limbic Seizures and neuroethology. In addition to EEG, reviewed after the 1st, 20th and 21th stimuli we also examined the presence/absence of neurodegeneration in regions of the limbic system. The results obtained in this study were compared with those obtained in the protocol of olfactory stimulation with TMT on acute audiogenic seizures of rats from the WAR strain. The TMT triggered fear reactions and modified the behavioral sequences, reduced motor activity and grooming behavior. Qualitative data from gas chromatography and mathematical algorithms made possible to establish the concentrations in the camera for the different doses of TMT. In addition, the gas chromatography helped to identify that 30 minutes is the time required for saturation and desaturation of the camera to TMT and indicated a homogeneous saturation of the interior of such camera. The pure TMT in rapid electrical kindling in Wistar rats was able to significantly reduce the Severity Index for Limbic Seizures, compared to water, corroborating the data of the neuroethology method indicating the suppressive effect of TMT in seizures, in both, the model of rapid electrical kindling as well as the acute audiogenic seizures. However, the results of the duration of the EEGraphic primary after-discharge at the 21th stimulus were inconclusive, requiring further analysis using different analytical methods. With the technique of FJC it was not observed necrotic cell death in any studied brain region. (AU)

FAPESP's process: 12/18563-9 - The influence of olfactory stimulation on the development of limbic seizures in rats Wistar
Grantee:Polianna Delfino Pereira
Support Opportunities: Scholarships in Brazil - Master