Advanced search
Start date

Effect of lectin ArtinM on murine CD4+ T cells

Full text
Thiago Aparecido da Silva
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Maria Cristina Roque Antunes Barreira; Vania Luiza Deperon Bonato; Roger Chammas
Advisor: Maria Cristina Roque Antunes Barreira

The lectin ArtinM, extracted from seeds of Artocarpus heterophyllus and characterized as a homotetramer consisted of 16 kDa subunits, has high binding affinity to the manotriose Man? 1-3 [Man? 1-6] Man, which is the core of N-glycans. ArtinM is endowed with interesting biological properties: (1) it activates neutrophils through the recognition of Nglycans attached to CXCR2 and TLR2 receptors; (2) induces degranulation of mast cells by interacting with N-glycans of Fc?R or to N-glycans of IgE bound to Fc?R; (3) stimulates the production of IL-12 through the recognition of N-glycans of the TLR2 ectodomain, expressed on the surface of antigen presenting cells (APCs); (4) exerts immunomodulatory activity, which accounts for Th1 immunity (5) confers resistance to intracellular pathogens, such as P. brasiliensis, Leishmania amazonensis and Leishmania major, Neospora caninum e Candida albicans. CD4+ T cells participate in essential functions of the immune system. During the development of an immune response, CD4+ T cells are activated and give origin to subpopulations of cells that are suitable for establishing effective responses to combat pathogens, for tolerance maintenance, and for adequate immuneregulation. The activation of CD4+ T cells depends on a first signal, triggered by the TCR/CD3 complex, and a second signal, provided by costimulatory molecules. The activation and expansion of CD4+ T cells is limited by the action of inhibitory molecules. Lectins may activate T cells, and Phytohemagglutinin (PHA) and Concanavalin A (ConA) are the best know examples. Furthermore, it is well characterized that the target for ConA recognition is localized in the TCR/CD3 complex. The present study was delineated to characterize the effects of the lectin ArtinM on murine CD4+ T cells and to investigate the possible mechanisms accounting for the observed effects. It was investigated the ArtinM direct effects on CD4+ T cells, concerning its ability to induce the production of cytokines, the expression of costimulatory and inhibitory molecules and cell differentiation. In addition, the possible surface receptors recognized by ArtinM and responsible for triggering cell activation were also assessed. Finally, signaling molecules involved in the direct effects of ArtinM were approached. The first evidence of direct interaction of ArtinM with CD4+ T cells was provided by cell agglutination. A dose-response curve has revealed that 5µg/ml was the best ArtinM concentration to achieve significant production of Th1 (IL-2 and IFN-?) and Th17 (IL-6 and IL-17A) cytokines by TCD4+ cells. Stimulus with the optimum ArtinM concentration has showed that after 12 hours incubation there was a significant augmentation of IL-2, IFN-?, IL- 6 and IL-17A levels in the cell supernatant; which has persisted in the course of 48 hours observation. The concomitant secretion of IFN-? and IL-17A led us to evaluate, by flow cytometry, the intracellular expression of these cytokines. After 24 hours stimulation with ArtinM, there was a significant increase in the frequency of cells IFN-?+IL-17+. Once the cytokines detection indicated that CD4+ T cells have been activated by ArtinM, the expression of CD25 and CTLA-4 molecules was assessed. ArtinM increased the expression of both molecules, in a dose-dependent manner. Interestingly, both cell surface molecules, CD25 and CTLA-4, were early and persistently detected a temporal pattern that is distinct from the provided by other inducers of CD4+ T cell activation. In order to determine the mechanism by which ArtinM acts on CD4+ T cells, potential targets of recognition were assessed: CD3??, CD3?, CD28, CD45 and CD4. These receptors were selected on the basis of prediction of N-glycosylation sites. Specific antibodies for these molecules were assayed regarding their ability to inhibit the ArtinM of inducing TCD4+ cells to produce cytokines, such as IL-2, IFN-?, IL-6 and IL-17A. Only anti-CD3 antibody was able to prevent the cytokines secretion induced by ArtinM. In addition, anti-CD3 antibody has inhibited the T CD4+ cell labeling by biotynil-ArtinM. These data indicate that ArtinM exerts its biological activity on T CD4+ cells through recognition of CD3 receptor ? chain glycans, without excluding the occurrence of ArtinM interactions with other glycoproteins on the surface of T CD4+ lymphocytes. The interaction of ArtinM with glycans at the surface of these cells was found to occur with great specificity, since high concentrations of the manotriose - Man? 1-3 [Man? 1-6] Man - were required to inhibit the binding. By using specific inhibitors of signaling molecules, we have found that PI3K, PTK and p42/44MAPK are relevant cytokine production profiles of Th1 and Th17 cells after stimulation with ArtinM. All toghether, these results indicate that ArtinM is a potent and rapid activator of CD4+ T cells. The activation induced by ArtinM is triggered by its binding to the CD3 receptor ? chain, which induces high expression of costimulator and inhibitory molecules. Moreover, it was demonstrated that ArtinM promotes the differentiation of naive CD4+ T cells into Th1 and Th17 cells by committing signaling molecules that are known as critical for the induction of cytokines that characterize these subpopulations of cells. (AU)