Advanced search
Start date
Betweenand


Kinetic characterization of the reduction of 1-Cys Peroxiredoxins by ascorbate

Full text
Author(s):
Valesca Anschau
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Luis Eduardo Soares Netto; Merari de Fatima Ramires Ferrari; Flavia Carla Meotti; Walter Ribeiro Terra
Advisor: Luis Eduardo Soares Netto
Abstract

Peroxiredoxins (Prxs) are enzymes that play central roles in cellular redox metabolism, since they reduce peroxides with extraordinary rates and are abundant proteins. Prxs are found in all kingdoms with multiple isoforms, performing multiple functions such as antioxidants, molecular chaperones, and regulators of signal transduction. Prxs are Cys-based, thiol-dependent peroxidases with remarkable catalytic efficiency that can be divided into 1-Cys or 2-Cys, depending on the number of Cys residues involved in catalysis. Initially, reduction of Prxs was described to be strictly dependent on thiols, but later we showed that ascorbate can also reduce the sulfenic intermediate of 1-Cys Prx (1-Cys Prx-SOH) from various organisms. These data represented a breakthrough in the thiol-specific antioxidant paradigm, as ascorbate can also reduce sulfenic acids in 1-Cys Prx. To gain evidences that ascorbate could be a biological reductant for 1-Cys Prx it was necessary to determinate the respective second order rate constant, since in cells other compounds might compete with this antioxidant. Due to technical issues, this was a challenge for many years. In this work, we describe the kinetic characterization of sulfenic acid reduction by ascorbate in several proteins. Firstly, the reduction of 1-Cys Prx-SOH by ascorbate was analyzed using an enzyme from A. fumigatus (AfPrxA) that is 37% similar to PRDX6 (human 1-Cys Prx) and was quite stable. Initially, a steady-state, bi-substrate approach was followed by means of a specific H2O2 electrode (Free Radical Analyzer 4100, World Precision Instruments Inc.). AfPrxA decomposed H2O2 in an ascorbate dependent manner with good efficiency (kcat/KM asc = 7.4 x103 M-1s-1), through a Bi-Bi Ping-Pong mechanism. To further support these findings, we developed an independent, competitive kinetic approach based on the competition between dichlorophenolindophenol (DCPIP) and sulfenic acid to ascorbate. DCPIP is a redox sensor, whose blue color is lost when reduced. Firstly, we confirmed that in our conditions DCPIP was reduced by ascorbate with a second-order rate constant of 718 M-1s-1, similar to values previously described. This procedure validated our assay conditions and allowed us to proceed in the competitive method for the determination of the second order rate constant of the reaction of AfPrxA-SOH with ascorbate (1,5 x 103M-1s-1) at pH 7.44, 25ºC by pseudo first order approach. Therefore, by two independent approaches, we showed that ascorbate reduced AfPrxA-SOH with rate constants in the 103 M-1s-1 range. It also allowed us to determine the second order rate constants for the reduction 1-Cys Prxs from other organisms such as bacteria, yeast, plant and mammal. In all cases, the rate constants were in the 103 M-1s-1 range. Subsequently, we analyzed whether a recombinant yeast 2-Cys Prx (Tsa1), whose resolving Cys (Cysr) was mutated to a serine residue (Tsa1-C170S) acquired the ascorbate dependent activity. Again, the sulfenic acid form of Tsa1-C170S was reduced by ascorbate in the same 103 M-1s-1 range. In addition, we decided to investigate the reduction of Cys-SOH by ascorbate in other proteins like glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and Papain that also have a sulfenic acid as product of their oxidation. The second order rate constants obtained for the reaction with ascorbate were again in the same range (103 M-1s-1). In conclusion, the reduction of sulfenic acids present in Prx by ascorbate might be relevant in the subcellular compartments in which this reductant is present at high levels, capable to compete with other reductants. Furthermore, ascorbate can reduce sulfenic acid in other proteins, and this interaction may represent a new route in redox biology that has yet be explored in vivo (AU)

FAPESP's process: 12/00629-3 - Kinetic characterization of the reduction of 1-cys peroxiredoxins by ascorbate.
Grantee:Valesca Anschau
Support Opportunities: Scholarships in Brazil - Doctorate