Advanced search
Start date
Betweenand


Residual effect of potassium fertilization on the nutrient forms in soil

Full text
Author(s):
Ruan Francisco Firmano
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Luis Reynaldo Ferracciú Alleoni; José Lavres Junior; Jose Marques Junior; Paulo Sergio Pavinato
Advisor: Luis Reynaldo Ferracciú Alleoni
Abstract

Potassium (K) is the cation present in greater quantity in the cytoplasm and acts on enzymatic and metabolic processes vital for plants. The absorption occurs in the roots in the soluble form (K+), and its bioavailability depends on the ways in which the element is associated with the soil. There is no critical limit between soluble, exchangeable, non-exchangeable and structural fractions of K, and its changeable concentrations are affected by biotic and abiotic factors. Oxidic soils located in humid tropical environments generally have low contents of total K, attributed to the strong degree of weathering in these regions and to the parent materials, poor in the nutrient. The levels available K are set as a reference for diagnosis and fertilization calculations in Brazil. However, there are evidence that forms not extractable by conventional extractors can contribute to plant nutrition, especially in the absence of response to potassium fertilization in soils with low levels of available K, in which the process of soil sampling and K determination were done properly. Moreover, even in highly weathered soils, mineral sources of K can be identified by diffraction techniques and sequential extraction in soil minerals present in soil fractions with associated K. Soybean (Glycine max L.) is of great economic importance and requires high amounts of K as compared to other species. The objective was to evaluate the effect of parent material and soil mineralogy in the chemical attributes and K forms, as well as on K soybeans nutrition. This project was carried out with samples of an Oxisol, coming from a long-term field experiment started in 1983 at Londrina (state of Paraná), to evaluate the effect of potassium fertilizer rates (KCl) on soybean yield in cycles with either restraint or accumulation cycles of K. With the interruption of potassium fertilization in 2008, plants have been fed by the residual K in the soil for seven crops. Studies with the residual effect of K in tropical production systems are scarce, especially in long-term experiments under Oxisols. Thus, in October 2015 potassium fertilizer was reapplied in half of the plots to evaluate the effect of fertilization and the maintenance of the residual effect on the mineralogy and on the forms of K in the soil as well as in soybean nutrition. Elemental mapping was performed and quantification of the K in the parent material (basalt), as well as the identification and study of the mineral reserve of K in the soil clay fraction by diffractions and sequential extractions. The exchangeable forms (ion exchange resin and Mehlich-1), non-exchangeable and total K in the soil were determined, in addition to the total contents of K in their separate fractions. For fertility purposes, soil chemical properties were determined before and after application of K in subplots. The quantities of macronutrients and micronutrients were determined, with the exception of nickel (Ni), chlorine (Cl) and molybdenum (Mo) in the trefoil, aerial parts, and grains, as well as production parameters as dry mass produced, yield and mass of a hundred grains. The mineralogical composition of the soil had little variation, with oxides/hydroxides such as hematite, goethite, and gibbsite, 1:1 and 2:1 phyllosilicates, with or without hydroxyl-Al interlayers, ans other minerals such as quartz, maghemite, and anatase. The highly-weathered Oxisol presented mineral species containing potassium in the clay fraction. The extractors of exchangeable forms of K (Mehlich-1 and ion-exchange resin) extracted differect amounts os K. The availability of K, as well as the nutrient reaplication after the residual effect, influenced the nutrient contents in trefoils, aerial parts, and grains, as well as yield, grain mass and dry mass of aerial parts. (AU)

FAPESP's process: 15/18952-3 - Residual effect of potassium fertilization on the forms of the nutrient in the soil
Grantee:Ruan Francisco Firmano
Support Opportunities: Scholarships in Brazil - Master