Advanced search
Start date
Betweenand


Water retention and conduction properties assessed in field conditions

Full text
Author(s):
Fernando Henrique Setti Gimenes
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Paulo Leonel Libardi; Miguel Cooper; José Eduardo Corá; Sergio Oliveira Moraes; Laura Fernanda Simões da Silva
Advisor: Paulo Leonel Libardi
Abstract

The soil hydraulic properties of interest are the soil water retention curve, hydraulic conductivity and hydraulic diffusivity, both as a function of the soil water content. These properties depend on the size, shape, distribution and degree of pore interconnections. The instantaneous profile method is one of the most used methods to determine the unsaturated hydraulic conductivity due to its experimental and mathematical simplicity. Thus, this project aims to evaluate a) hydraulic conductivity as a function of water content in two distinct structured soils by the instant profile method, without/with removal of overlying horizons, estimating the soil water content through retention curves determined in the laboratory and in the field, and b) the soil porous system using image analysis techniques and correlation the results to the unsaturated hydraulic conductivity obtained by the instant profile method. The experiment was conducted on four horizons of a Ferralsols and a Nitisol. The SWRC was made with tensiometers with mercury manometers, while a SWRC in the laboratory was made with undisturbed soil samples in porous plate funnels and in porous plate pressure chamber. The unsaturated hydraulic conductivity was determined by the indirect method in the laboratory and using the instant profile method in the field, without/with removal of the overlying horizons. The conclusions are: (a) the water content for each tension in the field are smaller than those obtained in the laboratory at practically all tensions; (b) the efficiency of the water retention curve fitting equation was greater for the laboratory method; (c) the micromorphometric analysis tended to underestimate pore area values for all pore size classes and horizons; (d) the micromorphometric analysis provides an estimation of the porous system interconnections degree; (e) small changes in soil water content affect the hydraulic diffusion values to a much lower degree than the hydraulic conductivity; and (f) it is necessary to take care in using laboratory data to represent field conditions, since the values of K(θ) were overrated by the laboratory SWRC, compared to the field, more pronounced in smaller water tensions. (AU)

FAPESP's process: 14/14072-6 - Soil water retention and conduction properties assessed in field conditions
Grantee:Fernando Henrique Setti Gimenes
Support Opportunities: Scholarships in Brazil - Doctorate