Advanced search
Start date
Betweenand


Continuity of global attractors: the use of correctors to obtain better convergence rates

Full text
Author(s):
Cesar Augusto Esteves das Neves Cardoso
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Defense date:
Examining board members:
Alexandre Nolasco de Carvalho; Everaldo de Mello Bonotto; Ma To Fu; Sergio Muniz Oliva Filho; Juliana Fernandes da Silva Pimentel
Advisor: Alexandre Nolasco de Carvalho; Ricardo Parreira da Silva
Abstract

Here we compare the continuity of the asymptotic dynamics with respect to perturbations and, in particular, we explored to obtain improvement of rates of convergence of the global attractor through the introduction of correction factors, inspired by the results of homogenization theory and work of (BABIN; VISHIK, 1992) and (CARVALHO; CHOLEWA, 2011), and the introduction of mechanisms that improve the transference of the convergence rate of semigroups to the convergence rate of attractors, inspired by the work of (SANTAMARÍA, 2013) and (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). The initial proposal is focused on achieving best rates of convergence of the global attractors by obtaining equi-atraction and improving the convergence rate of semigroups. For this, we seek to improve the rate of convergence of the resolvents of sectorial operators, through a singular perturbation of the resolvent associated with the limit problem and generate a new family of sectorial operators whose resolvents both approximate the resolvent of the limit problem as they were closer to the resolvents the initial perturbation. Having done this, we obtain an immediate improvement of convergence of linear semigroups, after the non-linear (using the variation of constants formula). Motivated by the results of (SANTAMARÍA, 2013), which offer an improvement in obtaining convergence rates, we seek to study property better Lipschitz Shadowing, which is basically responsible for obtaining the distance of the attractors directly from the convergence rate of the semigroups. This has led us to discover that we can both preserve the Lipschitz Shadowing property under Lipschitz perturbations of Morse-Smale semigroups, and The geometric stability of the attractors. (AU)

FAPESP's process: 12/00033-3 - Continuity of global attractors: The use of correctors to obtain better rate of convergence.
Grantee:Cesar Augusto Esteves das Neves Cardoso
Support Opportunities: Scholarships in Brazil - Doctorate