Advanced search
Start date
Betweenand


State space computational data modelling and intelligent control

Full text
Author(s):
Annabell Del Real Tamariz
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Elétrica e de Computação
Defense date:
Examining board members:
Celso Pascoli Bottura; Antonio Augusto Rodrigues Coelho; Peterson de Resende; Gilmar Barreto; Marcio Luiz de Andrade Netto; Marconi Kolm Madrid; Paulo Augusto Valente Ferreira
Advisor: Celso Pascoli Bottura
Abstract

This study presents contributions for state space multivariable computational data modelling with discrete time invariant as well as with time varying linear systems. A proposal for Deterministic-Estocastica Modelling of noisy data, MOESP_AOKI Algorithm, is made. We present proposals forsolving the Discrete-Time Algebraic Riccati Equation as well as the associate Linear Matrix Inequalityusing a multilayer Recurrent Neural Network approaches. An Intelligent Linear Parameter Varying(ILPV) control approach for multivariable discrete Linear Time Varying (LTV) systems identified bythe MOESP_VAR algorithm, are both proposed. A gain scheduling adaptive control scheme based on neural networks is designed to tune on-line the optimal controllers. In synthesis, an Intelligent Linear Parameter Varying (ILPV) Control approach for multivariable discrete Linear Time Varying Systems (LTV), identified by the algorithm MOESP_VAR, is proposed. This way an Intelligent LPV Control for multivariable data computationally modeled via the MOESP_VAR algorithm is structured, implemented and tested with good results (AU)