Advanced search
Start date

Physical simulation of UNS S32205 duplex stainless steel friction stir welding

Full text
Eduardo Bertoni da Fonseca
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Mecânica
Defense date:
Examining board members:
Antonio Jose Ramirez Londono; Renato Pavanello; Hugo Ricardo Zschommler Sandim
Advisor: Sérgio Tonini Button; Antonio Jose Ramirez Londono

Physical simulation of friction stir welding (FSW) was employed to determine the thermomechanical conditions imposed to the material during the process, which are essential for the better understanding of the process and for the development of FSW numerical simulation. Therefore, hot torsion tests were carried out on UNS S32205 duplex stainless steel (DSS) using the thermomechanical simulator Gleeble 3800®. A liquid nitrogen quench system was developed in order to reproduce during the torsion tests the thermal history previously measured during FSW of the DSS. As a result, the microstructures from the thermomechanically affected zone (TMAZ), both advancing and retreating sides, and from the center of the stir zone (SZ) were reproduced. Microstructures were compared in terms of morphology, volume fraction, average grain size, and recrystallized fraction of each phase, by means of optical microscopy and electron backscattered diffraction (EBSD). Moreover, the softening mechanisms of each phase during hot deformation were investigated. Numerical simulation of the torsion tests were carried out in order to determine the true strain and the strain rate associated with each simulated microstructure. The TMAZ was physically simulated at 1030 °C, 500 to 750 rpm, and 0.50 to 0.75 revolution, which corresponds to true strains between 0.50 and 0.65, and strain rate of 11 s-1. Although good morphological resemblance was observed, the average grain size of the simulated regions remained smaller than the real TMAZ. The softening mechanisms observed were continuous dynamic recrystallization of the ferrite and partial dynamic recrystallization of the austenite, which resulted in a highly deformed structure. The SZ was simulated at 1130 °C, 500 to 750 rpm, and 1.2 revolution, which corresponds to true strain of 1.30 and deformation rate of 15 s-1. The grain refinement reported in the SZ was reproduced by the torsion tests, but morphological differences were observed due to the absence of stirring in the physical simulation. Dynamic recovery and dynamic recrystallization of the austenite were observed, as well as the continuous dynamic recrystallization of the ferrite (AU)

FAPESP's process: 11/04889-7 - Physical simulation of friction stirs welding on duplex stainless steels
Grantee:Eduardo Bertoni da Fonseca
Support Opportunities: Scholarships in Brazil - Master