Advanced search
Start date
Betweenand


Magnetic properties of a new series of rare-earth based intermetallic

Full text
Author(s):
Eduardo Matzenbacher Bittar
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Pascoal José Giglio Pagliuso; Eduardo Miranda; Elisa Maria Baggio Saitovitch
Advisor: Pascoal José Giglio Pagliuso
Abstract

Firstly synthesized by Remeika et al., for M = Rh, in 1980, the intermetallic compounds R3M4Sn13, where R = rare-earth ion and M = transition-metal (for exemple, Rh, Ir and Co), crystallizes with a cubic structure. These compounds include, for instance, superconducting materials, heavy-fermions, magnetic materials and paramagnetic metals. Complex magnetic ordering, crystalline electrical field effects (CEF) and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetic interaction are interesting physical phenomenal found in systems of these family, despite of their simple cubic structure. These facts make this series an excellent class of compounds to explore the interplay between these physical properties. In this work we describe the synthesis process and the physical properties of a novel serie of R3M4Sn13 for M = Co and R = La, Ce, Pr, Nd and Gd. R3Co4Sn13 single crystals were grown from metallic flux. Measurements of X-ray diffraction, magnetic susceptibility, heat capacity and electrical resistivity were performed. They crystallize in a cubic Yb3Rh4Sn13 type structure, space group Pm-3n, which has 40 atoms per unit cell. These compounds order antiferromagnetically at low temperature (TN < 15 K) for R = Nd and Gd, while Pr3Co4S n13 is paramagnetic down to 2K. The Ce3C o4Sn13 compound display heavy fermion behavior at low temperature and La3Co4Sn13 is a Pauli paramagnetic which superconducts at 2.3 K. With a mean field model (developed by collaborators) which considers magnetic interactions for the first neighbors and a cubic CEF, we fit simultaneously the magnetic susceptibility and heat capacity data obtaining the CEF parameters A4 and A6 that characterize the CEF potential for the R3Co4Sn13 intermetallic series. We observed that theses parameters are rare-earth independents, being the Ce-base compound the only exception (AU)