Advanced search
Start date
Betweenand


An analysis of the numerical efficiency of trial wave functions applied to Quantun Monte Carlo method

Full text
Author(s):
Juliana de Lima Paschoal
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Rogério Custodio; Antonio Carlos Borin; Adalberto Bono Maurizio Sacchi Bassi
Advisor: Rogério Custodio
Abstract

A recent strategy called Quantum Monte Carlo (QMC) allows to access the exact wave function of a system solving Schrödinger¿s equation. Among the alternatives of QMC, Variational Quantum Monte Carlo (VQMC) and Diffusion Quantum Monte Carlo (DQMC) are distinguished. VQMC determines the average value of any atomic or molecular property associated to an arbitrary wave function using Metropolis algorithm. DQMC, on the other hand, is based on the solution of the time-dependent Schrödinger equation from a diffusion process in equilibrium with a first-order kinetic process. In this work the objectives were: a) to compare the effect of the Slater basis set with exponents adjusted in different environments at the VQMC and DQMC levels of theory; b) to test wave functions based on the Hartree and Hartree-Fock models along with VQMC and DQMC; c) to evaluate the effect of orbital localization within these methods. These objectives are evaluated in atoms, diatomic molecules and some polyatomic hydrates containing elements from the second period of the Periodic Table. Initially, a conventional wave function represented by a single Slater determinant is used with orbitals from the linear combination of Slater¿s functions from the Hartree- Fock method. The basis set exponents are determined from the Slater rules, Hartree-Fock atom optimized and Hartree-Fock molecule optimized. VQMC and DQMC yielded the average energy of each system. Later, Slater¿s functions are changed to the STO-6G basis functions. The same basis set exponents are applied for the STO-6G calculations. Finally, the Hartree product is used as a wave function for the VQMC and DQMC calculations with the same basis functions already mentioned. The main conclusions fro this work are: a) DQMC, as expected, presents lower energies when compared to VQMC; b) DQMC calculations using single Slater determinant and basis set with molecule and atom optimized exponents and no correlation factor provided energies compared to a Gaussian double zeta basis set at the coupled cluster including singles and doubles excitations level of theory; c) STO-6G must be used with caution in order to represent STO functions; d) the energies calculated with the Hartree product presented a behavior not far from the Hartree-Fock wave functions when localized orbitals were used; e) better results are expected if orbitals are self-consistent with respect to the Hartree method. (AU)