Advanced search
Start date
Betweenand


Site-directed mutagesesis in an avian pathogenic Escherichia coli (APEC) isolated from a swollen head sindrome case: analisis in vitro and in vivo

Full text
Author(s):
Jacqueline Boldrin de Paiva
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Wanderley Dias da Silveira; Marcelo Palma Sircili; Waldir Pereira Elias; Vasco Ariston de Carvalho Azevedo; Tomomasa Yano
Advisor: Wanderley Dias da Silveira; Marcelo Brocchi
Abstract

Avian Pathogenic Escherichia coli (APEC) is responsible for significant economic loses in the poultry industry worldwide, by cause a range of systemic or localized diseases in poultry collectively termed colibacillosis. The virulence mechanisms of these pathogenic strains for poultry and possibly pathogenic for humans have not been fully elucidated. This work was developed in order to study genes potentially involved in the pathogenicity of an APEC strain isolated from a Swollen Head Syndrome case (SCI- 07) ONT:H31; since the results obtained in a microarray performed in vitro, which compared the SCI-07 strain to the standard strain E. coli 8624 EHEC (enterohemorrhagic strain). Nine overexpressed genes in microarray under the conditions studied were selected for construction of null mutants and their complements [feoA (iron transport), nirC (nitrite transporter), flgE (flagellar hook), tyrR (transcriptional regulator of the aromatic amino acids biosynthesis), potF (periplasmic putrescine transporter subunit), yehD (putative adhesin), bfr (bacterioferritin), csgA (major curling subunit) and entD (enterochelin)]. The mutants constructed were evaluated for their capacity for adhesion and invasion in cell cultures, and for its pathogenic potential in one-day-old chickens in comparison to the wild type strain (WT). The ?bfr, ?csgA and ?nirC strains showed decreased adhesion capacity on avian fibroblasts (CEF cells) compared to the WT in both models adopted: in the presence and absence of alpha-D-mannopyranoside, the ?potF strain showed decrease on adhesion only in the absence of alpha-D-mannopyranoside. The ?csgA and ?tyrR mutants had reduced ability to invade human larynx cell line (Hep-2 cells). No mutant showed changes in the capacity of invade avian fibroblasts birds (CEC-32cells). The ?flgE and ?tyrR mutants showed decreased ability to invade and survive into avian macrophages (HD11 cells). The motility of mutant strains ?csgA, ?bfr, ?yehD, ?potF, ?entD, ?nirC and ?feoA was increased while the ?tyrR mutant showed reduced motility and the mutant ?flgE became nonmotile. No mutant strain showed the same capacity of the WT in cause mortality in one-day-old chickes; ?feoA became hipervirulenta and all other mutants showed attenuation in different degrees, including the ?entD that was completely attenuated and a promising vaccine candidate strain to combat colibacillosis in poultry, or as a carrier strain of epitopes present in other APEC strains (AU)