Advanced search
Start date
Betweenand


Effects of exercise training on oxidative stress in pancreatic islets from dexamethasone-treated rats

Full text
Author(s):
Julia Laura Fernandes Abrantes
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
José Roberto Bosqueiro; Marcio Alberto Torsoni; Leonardo dos Reis Silveira
Advisor: José Roberto Bosqueiro
Abstract

When in excess, glucocorticoid administration can induce hyperglycemia, which has been associated to increased oxidative stress in numerous tissues. In endocrine pancreas, the oxidative stress has been related to the loss of pancreatic P-cell function and mass, contributing to the development of type 2 diabetes. By improving the insulin sensitivity and the antioxidative capability in several tissues, moderate exercise training could be an important tool in the prevention of oxidative stress. To test this hypothesis, the present study aimed to investigate the effect of a moderate exercise training plan, executed previous to dexamethasone challenge (DEX - lmg/kg per b.w., for 5 days), on numerous metabolical parameters, as well as on the redox state of the pancreatic islets in rats. For this, four experimental groups were designed: sedentary control (SC), sedentary treated with DEX (SD); trained control (TC) and trained treated with DEX (TD). DEX treatment induced fasting hyperglycemia (blood glucose levels: 90.8 ± 3.9, 299.2 ± 24.3, 84.3 ± 2.9, 229.9 ± 19.2 mg/dL for SC, SD, TC, TD, respectively; n = 10; P < 0.05), hypertriglyceridemia (blood triglyceride levels: 94.2 ± 4.3, 416.6 ± 54.3, 92.7 ± 6.0, 322.5 ± 48.7 mg/dL for SC, SD, TC, TD, respectively; n = 5; P < 0.05) and hyperinsulinemia (blood insulin levels: 1.10 ± 0.2, 23.01 ± 0.8, 1.21 ± 0.2, 21.66 ± 0.6 ng/mL for SC, SD, TC, TD, respectively; n = 5; P < 0.05) in SD and TD rats and insulin resistance (IR) only in SD rats (Rate for glucose disappearance - Kitt: 3 ± 0.2, 1.8 ± 0.1, 3.6 ± 0.2, 3.2 ± 0.4 for SC, SD, TC, TD, respectively; n = 5; P < 0.05). Additionally, it reduced total insulin content (CT: 191.6 ± 21.5, 97.1 ± 17.1, 370.3 ± 46.5, 185.6 ± 16.3 ng/islet for SC, SD, TC, TD, respectively; n = 10; P < 0.05) and increased reactive oxygen species levels (ROS) in pancreatic islets from SD and TD rats vs respective controls (ROS: 2.8 mMof glucose: 41.3 ± 2.6, 54 ± 1.3, 23.4 ± 1.5, 38.9 ± 4 UF/ug proteína; 22 mM of glucose: 33.3 ± 1.7, 38.4 ± 0.5, 10.1 ± 1.6, 28 ± 1.2 UF/ug protein for SC, SD, TC, TD, respectively; n = 10; P < 0.05). Of note, the exercise training was able to prevent IR and to reduce by 23% the fasting blood glucose levels in TD vs. SD rats. Exercise training also induced an augmentation in CT and in insulin response to stimulating glucose concentration (11.1mM) in isolated islets from TC and TD rats (Insulin secretion in 11.1 mM of glucose: 1.4 ± 0.2, 4.2 ± 0.2, 3.3 ± 0.2, 5.6 ± 0.5 ng/mL per islet per hour, for SC, SD, TC, TD, respectively; n = 12; P < 0.05).. Still, exercise training induced an increase in the catalase protein levels, an antioxidant enzyme (CAT: 100 ± 14.1, 113.8 ± 14.2, 151.6 ± 10.2, 183.2 ± 11.2, expressed as % SC, for SC, SD, TC, TD, respectively; n = 6; P < 0.05), as well as reduction in ROS levels in TC and TD islets. Based on these data, we suggest that the moderate exercise training may improve glucose homeostasis and prevent oxidative stress in pancreatic islets. (AU)