Advanced search
Start date
Betweenand


Structural and functional studies of Nek1 Nek6 protein kinases

Full text
Author(s):
Gabriela Vaz Meirelles
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Jörg Kobarg; Carmen Veríssima Ferreira; Claudio Chrysostomo Werneck; Deborah Schechtman; Adriane Regina Todeschini
Advisor: Jörg Kobarg
Abstract

NIMA was identified and functionally characterized in Aspergillus nidulans as a critical Ser/Thr kinase for cell cycle progression. The mammalian Neks (NIMA-related kinases) represent an evolutionarily conserved family of 11 serine/threonine kinases that share 40-45% identity with NIMA N-terminal domain. Neks are associated to cell cyclerelated functions and diverse pathologies, which highlight them as potential chemotherapeutic targets. Nek1 gene mutations lead to the development of polycystic kidney disease and the emergence of several pleiotropic effects, suggesting its involvement in pathways regulating various cellular processes. Nek6, in turn, is activated during mitosis, and overexpression of inactive mutants or its depletion by iRNA produces cells exhibiting mitotic spindle defects, nuclear abnormalities, metaphase arrest and apoptosis. Human Nek6 was recently found to be linked to carcinogenesis, but as for the majority of Neks, the molecular structure, interacting partners and signaling pathways remain elusive. Here we introduce hNek6 as a hub kinase in the human interactome. We performed a broad databank comparison based on degree distribution analysis and found that the human kinome is enriched in hubs. Our networks include a large set of novel hNek6 interactors identified in our yeast two-hybrid screens, classified into 18 functional categories. Some novel interactors are also putative substrates and colocalized with hNek6 and ?-tubulin in human cells, pointing to a possible centrosomal interaction. The interacting proteins link hNek6 to novel pathways, e.g. Notch signaling and actin cytoskeleton regulation, or give new insights on how hNek6 may regulate previously proposed pathways such as cell cycle, DNA repair and NF-?B signalings. Furthermore, we obtained the first low-resolution structural model of hNek6 by SAXS. Structural analysis revealed that hNek6 is a monomer in solution with a mostly globular, though slightly elongated conformation. Notably, we found that hNek6 unfolded short N-terminal region is important to mediate the interactions with its partners. In the case of hNek1, we found that it interacts with Fez1 and Clasp2 through coiled-coil motifs and colocalizes with these proteins in a candidate centrosomal region (AU)