Advanced search
Start date
Betweenand


Evaluation of resistance to tyrosine kinase inhibitors in Chronic Myeloid Leukemia patients by BCR-ABL mutation analysis and gene expression profiling analysis of patients treated with imatinib mesylate and dasatini

Full text
Author(s):
Rosana Antunes da Silveira
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Katia Borgia Barbosa Pagnano; Fabíola Traina; Nicola Amanda Conran Zorzetto; Paula de Oliveira Montandon Hokama; Anderson Ferreira da Cunha
Advisor: Katia Borgia Barbosa Pagnano
Abstract

The use of tyrosine kinase inhibitors (TKIs) has demonstrated efficacy in treating chronic myeloid leukemia (CML). However, resistance is an important problem in clinical practice and it has not yet been completely elucidated. Besides mutations within the BCR/ABL kinase domain (KD), diverse molecular mechanisms have been proposed to account for resistance to TKIs. Furthermore, some studies have been performed in order to identify gene expression signatures associated with primary cytogenetic resistance to imatinib (IM). So far, non-protein-coding RNAs expression, more specifically long non-coding RNAs (lncRNAs) expression, has not been investigated in this aspect. LncRNAs, especially those transcribed from intronic regions, have recently been suggested as potential regulators of gene expression in normal and cancer cells. The aim of this study was to evaluate possible mechanisms of resistance to TKI treatment in CML patients by performing BCR-ABL mutation analysis and identifying differentially expressed protein-coding genes and intronic lncRNAs in responder (R) and non-responders (NR) patients to IM and dasatinib. Mutation analysis performed by direct sequencing identified mutations in 37% (26/71) of the analyzed patients; the three most frequently detected mutations were T315I (25%), M244V (18%) and E255K/V (14%). Overall survival (OS) (p = 0.008), progression-free survival (p = 0.03) and event-free survival (EFS) (p = 0.006) rates were worse for patients harboring mutations. OS (p = 0.04) and EFS (p = 0.03) were significantly worse for T315I patients. Microarray expression profiling was performed on peripheral blood mononuclear cells from 7 and 21 patients, respectively, for the dasatinib and IM studies. Two array platforms (Agilent Technologies) were used in this study: the first one with probes exclusively mapping to protein-coding genes; the second, a custom-designed 44K oligoarray containing probes for intronic and exonic regions from the same genomic locus. Statistical analyses were performed with Significance Analysis of Microarrays and patient leave-one-out cross-validation techniques. Differentially expressed protein-coding genes and lncRNAs were identified by comparing three subgroups of pre- and post-treatment samples from R and NR. Next, each set of differentially expressed transcripts was analyzed by using the Ingenuity Pathway Analysis (IPA) software for identifying significantly enriched biological functions, gene networks and canonical pathways. Amongst the transcripts found as differentially expressed between R and NR are ABCF2, PAWR, ncCD44, ncTNFAIP8, and ncFOXO3A in the dasatinib study and LEF1, BCL2, FYN, ncPXN, ncNCAM1, and ncRASEF in the IM study. Nevertheless, in the IM study, the sets of differentially expressed transcripts were not capable of entirely distinguishing between responder and non-responders cases. In the present study differentially expressed transcripts between responder and non-responders' samples treated with dasatinib and IM were identified, and it suggests that lncRNAs play an important role in the molecular mechanisms of resistance. Further investigations are necessary to confirm these findings (AU)