Advanced search
Start date
Betweenand


Expression analysis of plant molecular chaperones and cloning, purification and primary charaterization of the proteins Hsp 100 and Hsp90 from sugarcane

Full text
Author(s):
Thiago Carlos Cagliari
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Carlos Henrique Inacio Ramos; Fernanda Canduri; Leonardo Fernandes Fraceto; Flavio Henrique da Silva; Gonçalo Amarante Guimarães Pereira
Advisor: Carlos Henrique Inacio Ramos
Abstract

Proteins are macromolecules that are vital to the functioning cell, participating in most of the biological reactions as well as structural components. To perform its function, a protein need to achieve its native structure through a process called protein folding. In this context, the molecular chaperone proteins are able to assist in the folding of other proteins, acting in the prevention of aggregation, disaggregation, translocation, activation, among others. From all types of existing chaperones, here were highlight the Hsp100 and Hsp90 families, which are related to processes of disaggregation and assistance of substrateprotein folding, respectively. This study sought to produce the recombinant proteins Hsp100 and Hsp82 from sugar cane for the characterization of their structure-function relationships. In order to do this, some techniques were employed such as: circular dichroism, fluorescence, dynamic light scattering and analytical ultracentrifugation. As a result, it was observed that the ionic strength of the solvent is capable of influencing the quaternary structure of protein Hsp100, which presents as a hexamer in lower salt concentrations. Furthermore, it is capable of recognizing protein aggregates formed by luciferase protein and citrate synthase in in vitro essays. The Hsp82 protein showed a dimeric structure, which was not influenced by the presence of nucleotides and presented a great thermal stability. Finally, the human protein p23, which is responsible for assisting in the Hsp90 protein folding of many proteins/protein complexes, was also characterized. In spite of some studies indicating the contrary, we observed evidence that the C-terminal region, which is rich in charged amino acid residues, can possible have some structure. The sugarcane chaperones study was guided by a previous chaperone sequence annotation work in the SUCEST (Sugarcane EST Genome Project) databank performed by our research group. In addition, results regarding chaperone sequences annotation in the eucalyptus databank (FORESTs - Eucalyptus Genome Sequencing Project Consortium) were presented here as well, which can also lead to future chaperone proteins function and structure studies. (AU)