Advanced search
Start date
Betweenand


Omega-3 fatty acids induce neurogenesis prdominantly of POMCexpressing cells in the hypothalamus

Full text
Author(s):
Lucas Francisco Ribeiro do Nascimento
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Ciências Médicas
Defense date:
Examining board members:
Licio Augusto Velloso; Alexandre Leite Rodrigues de Oliveira; Íscia Teresinha Lopes Cendes; Alicia Juliana Kowaltowski; Fernanda Guarino De Felice
Advisor: Licio Augusto Velloso
Abstract

In experimental models of high-fat diet (HFD)-induced obesity there is a development of hypothalamic leptin resistance due to the activation of a specific inflammatory responsein the hypothalamus. Recent studies have revealed that besides the induction of inflammation, a fat-rich diet can also activate apoptotic signaling pathways that culminate in neuronal death in hypothalamic areas responsible for the control of feeding and energy expenditure. It is believed that the loss of specific hypothalamic neuronal subpopulations deteriorates mechanisms involved in the control of caloric intake and energy expenditure, resulting in the development and perpetuation of obesity. The fatty acid composition of diet, particularly the saturated fatty acid content, can modulate immune activity in the hypothalamus, inducing an inflammatory response. However, in other regions of the brain, some unsaturated fatty acids can acts as anti-inflammatory agents and induce functional repair through neurogenesis. In this study we evaluated the effects of polyunsaturated fatty acids ?-linolenic (ALA C18:3-n3) and docosahexaenoic (DHA 22:6-n3) on the induction of hypothalamic neurogenesis in HFD-induced obese animals. Our results show that omega-3 fatty acids administered either in the diet or directly into the brain are able to modulate neurogenesis in the hypothalamus of obese mice, leading to the proliferation of anorexigenic POMC neurons. This effect is not accompanied by changes in food intake, but increase unstimulated physical activity resulting in a discrete increase in energy expenditure. In addition, omega-3 supplemented HFD reduces inflammation and apoptosis in the hypothalamus, improve glucose metabolism and protect the mice against body mass gain. Apparently, these newly formed neurons arise from progenitor cell proliferation present in the wall of the third ventricle. In this process, free fatty acid receptor, GPR40, and brain-derived neurotrophic factor, BDNF, play a key role; however, the involvement of these proteins in such events appears to be dependent on the nutritional and metabolic status of the animal (AU)