Advanced search
Start date
Betweenand


Structural and functional characterization of the Citrus sinensis protein CsMAF1, an interacting partner of the main type TAL effector of Xanthomonas citri

Full text
Author(s):
Adriana Santos Soprano
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Celso Eduardo Benedetti; Ivan de Godoy Maia; Maria Helena de Souza Goldman; Paulo Sérgio Lopes de Oliveira; Camila Caldana
Advisor: Celso Eduardo Benedetti
Abstract

Citrus canker, caused by Xanthomonas citri (X. citri), is a disease that affects most of the Citrus species, occurs in almost all continents and stands as a threat to the Brazilian citrus industry. The molecular mechanism by which X. citri causes canker is poorly understood, however the bacterium injects pathogenicity proteins via the type III secretion system (T3S) including proteins of AvrBs3/PthA family, also known as transcriptional activator-like (TAL) effectors. TAL effectors have been extensively studied and are known to act as transcription factors that transactivate specific plant genes which either benefit the bacteria or trigger defense responses. To gain insights into the molecular mode of action of TAL effectors, a twohybrid screening was performed to identify sweet orange (Citrus sinensis) proteins that interact with PthA4, one of the X. citri TAL effectors required for citrus canker development. Among the proteins identified as PthA4 interactors, most are DNA and/or RNA-binding factors involved in chromatin remodeling and repair, transcriptional control and mRNA stabilization/modification. Several of these proteins interact with each other, suggesting the presence of a multiprotein complex as a target of TAL effectors. Among the proteins involved in transcription control, we selected for further studies the CsMAF1, a homolog of the human MAF1 that acts as a negative regulator of RNA polymerase III. The results presented here reveal that CsMAF1 complements the yeast maf1 mutant phenotype by repressing the tRNAHis transcription, and that PthA4 expression in the complemented strain restores the tRNAHis synthesis. Thus, the data show that CsMAF1 acts as a RNA Pol III repressor in yeast and that PthA4 somehow suppresses the repressor activity of CsMAF1 upon on the RNA Pol III. Surprisingly, we found that citrus plants with reduced levels of CsMAF1 showed a significant increase in the number, morphology and size of eruptive or hyperplastic lesions when infiltrated with X. citri, indicating the CsMAF1 plays a critical role in canker development. Increased canker lesions in CsMAF1 silenced plants correlated with a significant increase of tRNAs expression, including tRNAHis, thus confirming the repressor role of CsMAF1 upon the citrus RNA Pol III. Furthermore, we showed in this work that CsMAF1 is a phosphorylated and a dimer in solution, a feature that so far has not been reported for any member of this protein family. We found that CsMAF1 is phosphorylated in vitro by PKA and PKC, and has additional phosphorylation sites for the TOR kinase, including the Thr 62 residue. Interestingly, these phosphorylation sites are located at the dimerization interface of CsMAF1, suggesting that phosphorylation of such sites might regulate the function of the protein and / or its multimeric state. Indeed, mutation of threonine residue Thr62 to aspartic acid (Asp62) decreases the dimer:monomer CsMAF1 ratio, indicating that phosphorylation of the residues at the interface of the dimer destabilizes the dimer, and this may be a novel regulatory mechanism for this class of protein. Thus, these findings open new perspectives for the understanding of the molecular mechanisms involved in RNA Pol III regulation by CsMAF1, as well as for the role of PthA4 in the modulation of RNA Pol III transcription mediated by CsMAF1 (AU)