Advanced search
Start date
Betweenand


Recent NMR techniques applied to protein-ligand interactions and metabonomics

Full text
Author(s):
Isis Martins Figueiredo
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Anita Jocelyne Marsaioli; Antonio Gilberto Ferreira; Fabio Ceneviva Lacerda de Almeida; Fred Yukio Fujiwara; Ljubica Tasic
Advisor: Anita Jocelyne Marsaioli
Abstract

Over the past years H NMR methods have been developed and applied to the screening and characterization of protein epitopes in ligand receptor complexes and metabonomics. These are recent NMR methods issues of the present PhD thesis. To investigate proteinligand complexes we first optimized techniques that were unavailable at IQ/UNICAMP such as STD, WaterLOGSY, NOE pumping and DOSY-NOESY which were specially designed for epitope mapping. In order to optimized these techniques we employed a mixture of five compounds (salicilic ac., caffeine, citric ac., adipic ac. and D-glucose) and bovine serum albumine (BSA). Among the studied ligands salicilic acid and caffeine were the best. From these experiments we additionally concluded that STD and WaterLOGSY were most sensitive and appropriate for epitope mapping. A second system was investigated consisting of Chaperone Hsp70, cofactor (ATP and ADP) and polypeptide Angiotensine 2 (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). Epitope I was characterized as containing a lipophylic domain in which the adenosine portion of ATP or ADP was bound to Hsp70. Epitope 2 was the polypeptide-binding site in which the apoIar portion of Angiotensine 2 (Val-Tyr-Ile-His-Pro-Phe) was tightly bound to Hsp70. In chapter 2, H NMR was the major tool employed to investigate the metabonomics of CSF of Multiple Sclerosis patients. Analyses of the H NMR data applying quimiometric methods (HCA, PCA and PLS-DA) revealed that some metabolites, from which b-hydroxybutirate (1,17 ppm) and a protein signal (0,065 ppm) were detected in EM patients only. These signals were never described as EM biomarkers before. To match these observations a full set of lipolytic and proteolytic biochemical reactions were proposed which are responsible for myelin degradation. Therefore, in this study we describe the successful implementation of these new NMR techniques that were applied to biological systems revealing new aspects of the Hsp70 and MS (AU)