Advanced search
Start date
Betweenand


Characterization of Citrus sinensis proteins that interact with the PthA effector protein, inducer citrus canker

Full text
Author(s):
Mariane Noronha Domingues
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Biologia
Defense date:
Examining board members:
Celso Eduardo Benedetti; Mirian Perez Maluf; Ricardo Harakava; Márcio José da Silva; Jörg Kobarg
Advisor: Celso Eduardo Benedetti
Abstract

Citrus canker, caused by the pathogen Xanthomonas axonopodis pv. citri (Xac), is a disease that affect most species of the genus Citrus occurring in virtually every continent, and stands as a threat to the Brazilian citrus industry. The bacterium uses a type III effector protein PthA to modulate transcription in the host plant and promote the development of disease symptoms. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. Elucidate how PthA activates transcription is of great importance for the elucidation of its mode of action and pathogenicity of Xac. This study aimed to confirm in vivo and in vitro interactions between Xac protein PthA and sweet orange proteins in a yeast two-hybrid screening. Here, in addition to the interaction with the ?- importin protein, known to mediate the nuclear import of AvrBs3, we described new interactions of PthAs with citrus proteins involved in folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domaincontaining thioredoxin. It was found that PthAs 2 and 3, but not 1 and 4, interact with the ubiquitinconjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. How PthA2 affected the growth of yeast cells in the presence of a DNA damage agent, suggests that PthA2 inhibits K63-linked ubiquitination required for DNA repair, and is not the target of this process as it was believed initially. The citrus protein Cyp was also able to complement the phenotype of yeast mutants in the transcriptional machinery, such that PthAs could increase the rates of transcription by modulating the activity of a protein complex associated with control of transcription (AU)

FAPESP's process: 06/60074-4 - Characterization of Citrus proteins that interact with the PthA effector protein, inducer of citrus canker
Grantee:Mariane Noronha Domingues
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)