Advanced search
Start date
Betweenand


Fast pyrolysis of whole sugarcane in pilot-scale fluidized bed reactor

Full text
Author(s):
Ricardo Baldassin Junior
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Agrícola
Defense date:
Examining board members:
Luís Augusto Barbosa Cortez; Manoel Regis Lima Verde Leal; Edgardo Olivares Gómez; Telma Teixeira Franco; Luiz Augusto Horta Nogueira
Advisor: Luís Augusto Barbosa Cortez
Abstract

The efficient and sustainable conversion of lignocellulosic feedstocks in modern biofuels and biochemicals is one of the great desires of the whole world, in view of the competitive advantages, potential of reduction of frontier agriculture expansion and reduction of oil dependence that only the bioenergy cultures may provide. In this context, Brazil shows an attractive scenery to develop an innovative and modern industry for biofuels and biochemical production, since it is one of the most important food, planted forest and biofuels world producer. Aiming to provide a better use and conversion of lignocellulosic feedstocks (largely available in Brazil), this work shows the first experimental results of the fast pyrolysis of sugarcane (whole sugarcane, trash and bagasse) conducted in a small scale fast pyrolysis plant from Feagri/Unicamp. The main objectives of this work were to evaluate the chemicals compositions of the biomasses and to quantify and to qualify the main fast pyrolysis products (charcoals and bio-oils). The biomasses analysis (proximate, ultimate and fiber/lignin analysis) showed there were no significant differences between the biomasses. The pretreatment process (chopping and grinding process) were conducted well using conventional technologies, and the sun drying process was able reducing the biomasses water contents to the level needed. After some adjustments and improvements, the fast pyrolysis were conducted well, with bio-oil yield productions between 12% and 17%, charcoal yield productions between 25% and 27%, and energy conversions between 42% and 67%. The bio-oils and charcoals proximate and ultimate analysis showed that there were no relevant differences among the products. However, the chromatography analysis demonstrated there were differences in the bio-oils organic compositions (distribution percentages of chemical groups), but with prevalence of carboxilic acids and phenols. In view of low bio-oils production, high charcoals productions and the high volatiles presences in the charcoals (between 20% e 25% in %wt), it was demonstrated that improvements and new studies are needed (AU)