Advanced search
Start date
Betweenand


The potentialy of protective agent in the amino group to synthesize chemically modified chitosan for use in sorption, drug release and calorimetry

Full text
Author(s):
Cintia dos Santos Oliveira
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Química
Defense date:
Examining board members:
Claudio Airoldi; Oyrton Azevedo de Castro Monteiro Junior; Antonio Reinaldo Cestari; Jose de Alencar Simoni; André Luiz Barboza Formiga
Advisor: Claudio Airoldi
Abstract

The chitosan biopolymer was chemically modified with amines after prior protection of the amino groups with benzaldehyde. The protection reaction provided the BZL biopolymer, which was activated with epichlorohydrin (EAC). The presence of epoxide groups derived from the epichlorohydrin allowed the inclusion of 2-aminomethylpyridine, 2-aminopyridine, 4-aminopyridine, tetraethylenepentamine, 1,3-(aminopropylimidazole), 1-(2-aminoethyl) piperazine and 1,4-bis(3-aminopropyl) piperazine. After bezaldehyde removal CTN, C2MF, C4MF, TETF, IZLF, 2PPF and 3PPF biopolymers were obtained, respectively, which were characterized by elemental analysis, X-ray diffraction, nuclear magnetic resonance of carbon nucleus in the solid state and infrared spectroscopy. The characterizations confirmed the success of protective reaction of amino groups as well as the benzaldehyde removal. The biopolymers were applied for the removal of copper and cadmium and also for reactive blue 15 (RB-15), brilliant green (BG), reactive yellow (RY) and reactive blue (RB) dyes. The experiments were carried out by batch method and the results were fitted with non-linear regression of the models of Langmuir, Freundlich and Sips, where the better fit was obtained using the last model. The biopolymers demonstrated better affinity for copper and among the dyes used, the best affinity was observed for RY. The C2MF, C4MF, CTN, TETF and IZLF biopolymers were also loaded with sodium ibuprofen (IBU) and diclofenac (DCLO) drugs. The release investigations were performed in simulated body fluids, resulting in slower release profile for DCLO. Through isothermal calorimetry processes, the interaction of IBU or Cu2+ with biopolymers was studied. The results indicated endothermic, spontaneous and entropically favorable processes for the drug and exothermic, spontaneous and favorable enthalpy process for the cation (AU)