Advanced search
Start date
Betweenand


One-step glycerol oxidehydration to acrylic acid using bifunctional catalysts

Full text
Author(s):
Luiz Gustavo Possato
Total Authors: 1
Document type: Doctoral Thesis
Press: Araraquara. 2017-01-20.
Institution: Universidade Estadual Paulista (Unesp). Instituto de Química. Araraquara
Defense date:
Advisor: Leandro Martins; José Geraldo Nery
Abstract

The increased production of biodiesel has led to the formation of large amounts of glycerol, which can be converted into compounds of petrochemical interest, such as acrylic acid. The first part consists in the study of catalytic behavior of bifunctional V2O5/MFI catalysts with acid and oxidizing properties investigated for the gas-phase oxidehydration of glycerol. One of the main reaction products was acrylic acid, produced by dehydration of glycerol to acrolein at an acidic site and subsequent oxidation at a redox site. Comparison of wet impregnation with vanadyl sulfate (VOSO4) and ammonium metavanadate (NH4VO3) showed that VOSO4 impregnation provided the best performance for the conversion of glycerol and selectivity towards acrylic acid (17%). XPS measurements of the fresh and spent catalysts enabled elucidation of the dynamic redox cycles of vanadium oxide during oxidation of acrolein. The presence of vanadium in the zeolite improved the catalyst lifetime, because of the multifunctional ability of the vanadium oxide species to convert acrolein to acrylic acid and act as catalyst for the oxidation of coked glycerol products. Qualitative and quantitative analyses of the coke deposited in the spent catalysts were performed using 13C NMR and thermogravimetry, respectively. The second chapter is related to ZSM-5 zeolite (MFI structure, Si/Al = 40) treated using NaOH and either oxalic acid or HCl to obtain hierarchical materials with different characteristics, followed by impregnation with vanadium oxides (V2O5) to generate redox-active sites. The impact of the multiple treatments on the efficiency and stability of the catalysts in the conversion of glycerol to acrolein and acrylic acid (25%) was investigated and correlated with catalyst porosity, acidity, and chemical composition. The studies showed that the catalytic performance of the materials depended on the acidic and textural properties of the zeolites, which influenced both the dispersion of V2O5 and its interaction with the acid sites of the supporting zeolites. The third part presents an in situ study of the crystallographic phases formed during the thermal treatment of precursors of vanadium and molybdenum oxides, measured under synchrotron X-ray diffraction. The interest in the speciation of MoxVyOz mixed oxides lies in the excellent catalytic performance of these materials for the selective conversion of glycerol to acrylic acid employing the oxidehydration reaction. The crystallographic structure of the active phases of MoxVyOz directly influences on the nearby metal valence and, therefore, on the dynamic changes in metal oxidation states during the catalytic reaction. The thermal treatment of a mixture of the precursors of Mo and V under oxidizing or inert atmospheres revealed the major formation of 61 % of MoV2O8 or 29 % of Mo4V6O25, respectively, at a final temperature of 500 ºC. The most active phase for acrylic acid formation was MoV2O8 (3.5 times more active than the separate metal oxides), due to the instability of the phase with respect to framework oxygen at the reaction temperature. The cycle of reduction and oxidation of the vanadium in MoV2O8 during the reaction caused dynamic creation of oxygen vacancies, resulting in 97 % conversion of glycerol and 32 % selectivity towards acrylic acid. The fourth and last part is related to the mixed oxides dispersed on the zeolite support. (AU)

FAPESP's process: 13/10204-2 - Oxidative dehydration of glycerol to acrylic acid in one step using bifunctional catalysts
Grantee:Luiz Gustavo Possato
Support Opportunities: Scholarships in Brazil - Doctorate