Advanced search
Start date
Betweenand


Mate selection in aquaculture species

Full text
Author(s):
Grazyella Massako Yoshida
Total Authors: 1
Document type: Doctoral Thesis
Press: Jaboticabal. 2018-03-23.
Institution: Universidade Estadual Paulista (Unesp). Faculdade de Ciências Agrárias e Veterinárias. Jaboticabal
Defense date:
Advisor: Roberto Carvalheiro; Sandra Aidar de Queiroz; José Manuel Yáñez
Abstract

The aims of this work were: (i) test the efficiency of mate selection (MS) algorithm in controlling the inbreeding and coancestry level, as well, increase the genetic gain; (ii) include the genetic variability of the future progeny as component for the optimization of the MS objective function in two aquaculture real dataset; and (iii) compare MS among truncation selection (TS) and optimum contribution selection (OCS) scenarios combined to different mating strategies to assess the best method in controlling inbreeding and maintain the genetic gain, for aquaculture breeding using simulated dataset. For objective (i) and (ii), a total of 8,782 Nile tilapias (NT) from five generations and 79,144 coho salmon (CS) from eight generations were used to optimize the objective functions (OF) and twenty discrete generations were simulated for the objective (iii), considering 50 families and 2,000 offspring per generation, and a trait with heritability of 0.30. The OFs were optimized accounting to coancestry of parents, expected genetic merit and inbreeding of the future progeny for the objective (i) and (iii) and in addition the genetic variability of the future progeny was considered for the objective (ii). For the objective (i), the mate selection allowed reducing inbreeding up to 73% for NT, compared with truncation selection, and up to 20% for CS, compared with realized scenario. In the objective (ii), MS allowed producing animals with higher (SD = 0.77 and 0.30 for NT and CS, respectively) or lower (SD = 0.25 and 0.14 for NT and CS, respectively) dispersion of estimated breeding value, depending on the objective function optimized. For real data set the MS outperformed the real mates and truncation selection and in addition the genetic variability of the future progeny could be changed when this component was considered in the OF. For the simulated dataset, the MS outperformed the TS and OCS followed by random mating. In the short-term, MS was more efficient than OCS + inbreeding minimizing in controlling inbreeding under the same genetic gain. However, in the long-term, OCS and MS resulted in similar genetic progress and average inbreeding, under the same weight on coancestry. In general, the mate selection algorithm was efficient and flexible to optimize objective functions accounting for different components, under practical applications in aquaculture breeding. (AU)

FAPESP's process: 14/20626-4 - Mate selection in aquaculture species
Grantee:Grazyella Massako Yoshida
Support Opportunities: Scholarships in Brazil - Doctorate