Advanced search
Start date
Betweenand


Ceramic and metallic implants - osseointegration characterization by immunohistochemistry, lectinhistochemistry and fluorescent markers

Full text
Author(s):
Kalan Bastos Violin
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Pesquisas Energéticas e Nucleares (IPEN/BT)
Defense date:
Examining board members:
Ana Helena de Almeida Bressiani; Paulo Henrique Pires de Aguiar; Emerson Soares Bernardes; Olga Zazuco Higa; Cecília Amélia de Carvalho Zavaglia
Advisor: Ana Helena de Almeida Bressiani
Abstract

The use of biomaterials in bone, whether ceramic or metallic, are important tools for regenerative medicine aiming to repair, restore, restitute, support, treat and substitute damaged tissue. The evaluation of biological response towards biomaterials is a big challenge considering the inherent aspects of mineralized bone tissue and physical characteristics of biomaterials. The understanding of the cellular behavior involved will propitiate the development of more fit and adequate biomaterials to the targeted bone. The objective of this study was to evaluate the osseointegration of ceramic and metallic implants after in vivo testing on bone, with histochemical staining techniques as Giemsa-Eosin (GE), Hematoxylin-Eosin (HE), Masson-Goldners Trichrome (MG), Massons Trichrome (MT), Gomoris Trichrome (GT), Picrosirius Red (PS), Toluidine Blue (TB), besides Immunohistochemistry (IHC), Lectinhistochemistry (LHC) and Fluorescent labeling. The ceramic implants were produced using calcium phosphates: hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP) and their biphasic mixture (BCP) 1:1 by weight, as ceramic foam by gelcasting or as ceramic spheres obtained by the innovative Snowballing technique. The metallic implants were produced using commercially pure titanium (cpTi) and alloy Ti-13Nb-13Zr (Alloy) by powder metallurgy, using natural polymers as additives to achieve macroporosity and microporous without additives and different surface treatments. The osseointegration evaluation was performed on implanted tibia bone of New Zealand White rabbits after repair period in bone-implant samples either decalcified or undecalcified. Histological analysis of stained slides with optical microscopy showed samples with bone ingrowth and osteointegration on all implants. The Fluorescent analysis evidenced the bone growth phases and areas according to each marker injection period. Intense remodeling process throughout the bone, bone ingrowth inside the pores and surrounding the implants was observed with the markers tetracycline and calcein. The IHC analysis was performed using markers for osteopontin (OP), osteocalcin (OC) and osteonectin (ON), and LHC analysis using five lectins. The best marker by IHC was OP; with correlation between the result of lectin WGA and the antibody for OP. The LHC technique was successful creating profiles for comparison between biomaterials. The results of RCA-1 for all ceramic and metallic implants indicates that this is a promising marker for differentiation at osseointegration studies, as well as the results of sWGA and PNA for Alloy implants. (AU)

FAPESP's process: 10/20698-4 - Osteointegration evaluation of metallic and ceramic implants by multiple techniques
Grantee:Kalan Bastos Violin
Support Opportunities: Scholarships in Brazil - Doctorate