Advanced search
Start date
Betweenand


Towards Precise Large Scale Structure Predictions with Effective Field Theories

Full text
Author(s):
Henrique Rubira
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Física (IF/SBI)
Defense date:
Examining board members:
Marcos Vinicius Borges Teixeira Lima; Miguel Boavista Quartin; Rogério Rosenfeld
Advisor: Marcos Vinicius Borges Teixeira Lima
Abstract

With future cosmological surveys, cosmology will enter in the precision era. New data will improve the constraints on the standard cosmological model enhancing our knowledge about the universe history, its components and the behavior of gravity. In this context, it is vital to come up with precise theoretical predictions for the formation of large-scale structure beyond the linear regime. The best way of solving the fluid equations that describe the large-scale universe is through lattice simulations, which faces difficulties in the inclusion of accurate baryonic physics and is very computationally costly. Another approach is the theoreti- cal calculation of the correlation statistics through the perturbative approach, called Standard Perturbation Theory (SPT). However, SPT has several problems: for some cosmologies, it may not converge and even when it converges, we cannot be sure it converges to the right result. Also, it contains a special scale that is the loop momenta upper-bound in the integral. In this work, we show results for the 3-loop calculation. The term of third order is larger than the terms of 2-loops and 3-loops, making explicit SPT problems. In this work, we describe the recent usage of Effective Field Theories (EFTs) on Large Scale Structure problems to correct SPT issues and complement cosmological simulations. EFTs are used in other areas of physics, such as low energy QCD, serving as a complement to lattice calculations. EFT improves the predictions for the matter power spectrum and bispectrum by adding counterterms that need to be fitted. The free parameters, instead of being a problem, bring relevant information about how the small-scale physics affects the scales for which we are trying to make statistical predictions. We show the calculation of the 3-loop EFT counterterms. EFTs are also used to explain main points connecting the matter density field with tracers like galaxies and halos. EFTs highlighted how to construct a complete basis of operators that parametrize the bias. We explain how we can use EFT to improve the bias prediction to non-linear scales. We compute the non-linear halo-bias by fitting the bias parameters in simulations. We also show the EFT renormalization in Lagrangian coordinates. Finally, we explain another critical EFT application to cosmology: in primordial physics. It can be used to parametrize deviations to the slow-roll theory within the inflationary paradigm. (AU)

FAPESP's process: 16/08700-0 - Effective field theory in large scale structure and 3 point correlation function calculus in the Dark Energy Survey
Grantee:Henrique Rubira
Support Opportunities: Scholarships in Brazil - Master