Advanced search
Start date
Betweenand


Monitoring and evaluation of treatment system for wastewater composed of UASB reactor, photobioreactor, flotation and disinfection processes

Full text
Author(s):
Nathalie Dyane Miranda Slompo
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Luiz Antonio Daniel; Beatriz Cruz Gonzalez; Gustavo Henrique Ribeiro da Silva; Clovis Wesley Oliveira de Souza; Adriano Luis Tonetti
Advisor: Luiz Antonio Daniel
Abstract

The current economic \"extract, transform, discard\" model is reaching its physical limits. Confronting with issues of resource availability Circular economics is an attractive alternative that seeks to redefine the notion of growth, with a focus on benefits for the whole society. Within this new vision, concepts of decentralized and sustainable sanitation treatments that focus on the treatment and recycling of resources present in domestic wastewater are considered. Thus, from a wastewater it is possible to obtain three main resources: bioenergy, nutrients and water. The main objective of this research was to evaluate the production of an effluent conducive to non-potable reuse from black water. The black water was treated anaerobically (UASB reactor) to remove organic matter, followed by a photobioreactor to remove nutrients, with consequent separation of the algal biomass by dissolved air flotation. At this point, the nutrient uptake by microalgae and the growth of their biomass were evaluated. After flotation, the effluent was disinfected, thus evaluating the inactivation of total coliforms and Escherichia coli, as well as Giardia spp. and Cryptosporidium spp. in the treatment system. The UASB reactor maintained high levels of organic matter removal (COD), with removals of 70%. Presents an average removal of Escherichia coli and faecal coliforms between 1 and 3 log. For protozoa this removal was between 0.5 and 1.5 log. The photobioreactor, obtained satisfactory biomass growth, without temperature control or CO2 supplementation, also showed removal/inactivation of Escherichia coli and total coliforms, with values ranging from 0.50 to almost 3.0 log, generally presenting greater removal inactivation for Escherichia coli. Removal of protozoa and coliforms by flotation by dissolved air was observed, leading to a higher concentration of these in the biomass removed. The best individual disinfectant was chlorine, due to inactivation. However, ozone was the one that best obtained removal (oxidation) of organic matter. Regarding disinfectants applied sequentially or simultaneously, it was observed that the best inactivation was promoted by the sequential test with ozone and chlorine, with inactivation of up to 3.10 and 3.38 log for Escherichia coli and total coliforms, respectively. With synergistic effect in relation to the individual application of these disinfectants. It is recommended to use the system for decentralized treatment, especially in small communities and in rural areas. (AU)

FAPESP's process: 15/04594-8 - Evaluation of processes of removal and inactivation of Giardia spp., Cryptosporidium spp. and indicator microorganisms in blackwater previously treated sequentially by UASB reactor, photobioreactor and flotation
Grantee:Nathalie Dyane Miranda Slompo
Support Opportunities: Scholarships in Brazil - Doctorate