Advanced search
Start date
Betweenand


Bioinformatic tool to integrate and understand aberrant epigenomic and genomic changes associated with cancer: Methods, development and analysis

Full text
Author(s):
Tiago Chedraoui Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Rodrigo do Tocantins Calado de Saloma Rodrigues; Benjamin Phillip Berman; João Carlos Setubal; Ricardo Zorzetto Nicoliello Vencio
Advisor: Houtan Noushmehr
Abstract

Cancer, which is one of the major causes of mortality worldwide, is a complex disease orchestrated by aberrant genomic and epigenomic changes that can modify gene regulatory circuits and cellular identity. Emerging evidence obtained through high-throughput genomic data deposited within the public TCGA international consortium suggests that one in ten cancer patients would be more accurately classified by molecular taxonomy versus histology. Therefore, we have hypothesized that the establishment of genome-wide maps of the de novo DNA binding motifs localization coupled with differentially methylated regions and gene expression changes might help to characterize and exploit cancer phenotypes at the molecular level. Technological advances and public databases like The Cancer Genome Atlas (TCGA), The Encyclopedia of DNA Elements (ENCODE), and The NIH Roadmap Epigenomics Mapping Consortium (roadmap) have provided unprecedented opportunities to interrogate the epigenome of cultured cancer cell lines as well as normal and tumor tissues with high resolution. Markedly however, biological information is stored in different formats and there is no current tool to integrate the data, highlighting an urgent need to develop bioinformatic tools and/or computational softwares to overcome this challenge. In this context, the main purpose of this study is the development of bioinformatics tools in R programming language that will be submitted to the larger open-source Bioconductor community project under the GNU GPL3 (General Public License version 3). Also, we will help our collaborators improve of the R/Bioconductor ELMER package that identifies regulatory enhancers using gene expression, DNA methylation data and motif analysis. Our expectation is that these tools can effectively automate search, retrieve, and analyze the vast (epi)genomic data currently available from TCGA, ENCODE, and Roadmap, and integrate genomics and epigenomics features with researchers own high-throughput data. Furthermore, we will also navigate through these data manually in order to validate the capacity of these tools in discovering epigenomic signatures able to redefine subtypes of cancer. Finally, we will use them to investigate the molecular differences between two subgroups of gliomas, one of the most aggressive primary brain cancer, recently discovered by our laboratory. (AU)

FAPESP's process: 16/01389-7 - Bioinformatic tool to integrate and understand aberrant epigenomic and genomic changes associated with cancer: methods, development and analysis
Grantee:Tiago Chedraoui Silva
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)