Advanced search
Start date
Betweenand


Study of molecular mechanisms involved in low level laser therapy - induced analgesia in experimental Diabetic Peripheral Neuropathy.

Full text
Author(s):
Victoria Regina da Silva Oliveira
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto de Ciências Biomédicas (ICB/SDI)
Defense date:
Examining board members:
Camila Squarzoni Dale; Rodrigo Labat Marcos; Simone Cristina Motta; Vanessa Olzon Zambelli
Advisor: Camila Squarzoni Dale
Abstract

Peripheral neuropathy (PN) caused by diabetes mellitus is one of the most common complications of diabetes, affecting about 50% of patients. Among the many symptoms of Diabetic Peripheral Neuropathy (DPN), stands out the development of chronic pain, which affects mainly the extremities, presenting itself as exacerbated responses to noxious stimuli (hyperalgesia) and as pain in response to light or not painful stimuli (allodynia). Conventional treatments available for neuropathy, including the associated pain, are still inadequate, unsatisfactory and benefit only a small number of patients. In clinical practice, the low level laser therapy (LLLT) becomes increasingly popular, once it promotes early nerve regeneration, resulting in significant improvement of motor and sensory disabilities caused by various types of lesions in peripheral nerves. Although the effects are satisfactory, the mechanisms by which these effects occur are still unknown. In this study, the effects of lasertherapy (660 nm, 30 mW, 1.6 J/cm2, 15 sec, 0.28 cm2) on the treatment of DPN-induced pain and nerve damage was assessed in an experimental model of streptozotocin - induced diabetic neuropathy in mice. LLLT induced antinociception in neuropathic pain-mice dependent on the central release of opioids. After 21 consecutive applications, LLLT increased nerve growth factor (NGF) levels and induced structural recovery, increasing mitochondrial content and regulating Parkin in the sciatic nerve of mice with DPN. Together, these data provide further insights into the mechanisms involved in lasertherapy, emphasizing its therapeutic potential in the treatment of DPN. (AU)

FAPESP's process: 16/10372-0 - Study of molecular mechanisms involved in low level laser therapy: induced analgesia in experimental diabetic peripheral neuropathy
Grantee:Victória Regina da Silva Oliveira
Support Opportunities: Scholarships in Brazil - Master