Advanced search
Start date
Betweenand


Genomic analysis techniques allow the establishment of etiological diagnosis in short stature children of unknown cause

Full text
Author(s):
Thaís Kataoka Homma
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Alexander Augusto de Lima Jorge; Luciani Renata Silveira de Carvalho; Carlos Alberto Longui
Advisor: Alexander Augusto de Lima Jorge; Alexsandra Christianne Malaquias de Moura Ribeiro
Abstract

BACKGROUND: Patients born small for gestational age (SGA) are a heterogenous group, and in several cases, it is due to genetic processes. AIM: To perform a clinical and genetic-molecular investigation of short stature patients of unknown cause. METHODS: We selected short stature children (height <= -2 SDS for age and sex) of unknown cause for genomic evaluation. The study had two stages: 1st stage - 229 syndromic short stature patients (patients with short stature and dysmorphic features, developmental delay, and/or intellectual disability) were evaluated by molecular karyotype (aCGH/SNPa); 2nd stage: We selected 99 short stature children born SGA (birth weight and/or length <=-2 SDS for gestational age). They were classified according to the presence or absence of dysmorphic features into two groups: syndromic short stature (n=44) and isolated short stature (n=55). Patients with syndromic short stature were evaluated by whole exome sequencing (WES), and patients with isolated short stature were evaluated through a target panel sequencing (n=39) or WES (n=16). RESULTS: 1st stage: 32 (14%) syndromic short stature patients had pathogenic or probably pathogenic copy number variations (CNVs). We observed seven recurrent CNVs that are responsible for about 40% of all pathogenic/probably pathogenic genomic imbalances found in short stature patients of unknown cause. 2nd stage: Of the 99 patients evaluated, 23 pathogenic/likely pathogenic variants were found in genes already associated with growth disorders. Fifteen (34%) syndromic short stature patients had pathogenic variants in genes related to fundamental cellular processes, DNA repair and intracellular pathways; and eight (15%) isolated short stature patients had pathogenic variants in genes associated with growth plate development and the RAS/MAPK pathway. CONCLUSION: The heterogeneity of short stature makes the clinical diagnosis difficult. The new genomic approaches are effective to diagnose a larger number of undiagnosed patients (AU)

FAPESP's process: 15/26980-7 - Genetic causes of prenatal onset growth disorder
Grantee:Thais Kataoka Homma
Support Opportunities: Scholarships in Brazil - Doctorate