Radha Ranganathan | California State University Northridge - Estados Unidos
Surfactants and Polymers: Synthesis, Properties and Applications
![]() | |
Author(s): |
Chang Yihwa
Total Authors: 1
|
Document type: | Master's Dissertation |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2000-08-18 |
Examining board members: |
Frank Herbert Quina;
Marcelo Henrique Gehlen;
Pedro Luiz Onofrio Volpe
|
Advisor: | Frank Herbert Quina |
Abstract | |
This work presents a study of the effect of added acetonitrile on the properties of the micelles of the anionic detergent sodium dodecylsulfate (SDS) and the cationic detergent hexadecyltrimethylammonium chloride (CTACl). Conductimetric measurements were employed to determine the critical micelle concentration, cmc, and the degree of counterion dissociation, α, of the micelles as a function of the mole fraction of added acetonitrile, XAc. Time resolved fluorescence quenching measurements with pyrene as probe were employed to determine the effect of acetonitrile on the micellar aggregation number, N, and the dynamics of solute migration between the micellar and aqueous phases. At low mole fractions (XAc < 0.2), acetonitrile inserts into the cavities present in liquid water, partially disrupting the hydrogen bonding of water, with formation of new hydrogen bonds between water and acetonitrile. In this range, both the cmc and α increase, while N decreases. The dynamics of incorporation of counterionic and coionic quenchers into the micelles is also altered. Thus, the SDS and CTACl micelles formed in these acetonitrile-water mixtures are smaller, more highly dissociated and internally more fluid than those in aqueous solution. Above XAc of ca. 0,2, acetonitrile-water mixtures become microheterogeneous, the solution containing microdomains rich in acetonitrile and microdomains rich in water. The proportion of acetonitrile-rich microdomians increases with increasing XAc, with only small changes in the properties of the two types of microdomains. Correspondingly, at XAc > > ca. 0.2: the variation of the cmc and α with XAc is much less pronounced, suggesting that the detergent forms aggregates preferentially in the aqueous-rich domains; the fluorescence probe pyrene begins to exit the micelles during its excited state lifetime; and there are distinct changes in the rate constants for the incorporation of ions into the micelles. (AU) |