Advanced search
Start date
Betweenand


The magnetic field structure at the Small Magellanic Cloud

Full text
Author(s):
Aiara Lobo Gomes
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto Astronômico e Geofísico (IAG/SBD)
Defense date:
Examining board members:
Antonio Mario Magalhaes; Walter Junqueira Maciel; Claudia Vilega Rodrigues
Advisor: Antonio Mario Magalhaes
Abstract

The Small Magellanic Cloud (SMC) is a gas rich irregular galaxy which, together with the Large Magellanic Cloud (LMC), orbit the Milky Way (MW). They form a triple system in constant interaction. The SMC is a metal poor galaxy and, due to this, its interstellar medium (ISM) presents different properties from the Galaxy\'s ISM. In addition to that, the importance of magnetic fields on galactic scales is being recognized nowadays. Therefore, the aim of this project was to study the magnetic field structure of the SMC and its relationship with other components of SMC\'s ISM. For this purpose we have used starlight optical polarimetric data, obtained at Cerro Tololo Inter-American Observatory. We have constructed a polarization catalog containing a total of 7,207 stars in 28 fields in the Northeast/Wing sections of the SMC. The polarimetric vector maps trace the ISM magnetic field component in the plane of the sky and one can estimate its intensity towards a given region using the Chandrasekhar & Fermi method. Making use of the polarimetric catalog from this work, we have found that the magnetic field in the SMC, although varying from region to region, nevertheless shows two large scale patterns - the first one aligned with the Magellanic Bridge and a second one aligned with the SMC\'s Bar. We derived for the regular sky-projected magnetic field a value of Bsky = (1.84 ± 0.11) uG, and for the turbulent magnetic field dB = (2.920 ± 0.098) uG. These results evidence that in the SMC the random field prevails over the large scale field, which explains the irregular configuration of the polarization vectors often seen. Correlating the polarization maps with structures present on the SMC\'s ISM, we could identify the presence of several shells which may have magnetic fields up to a few tens uG. It was also possible to observe environments where the regular field seems to have been destroyed due to turbulence, and others where it seems that the large scale magnetic field has not enough time to be formed. Studying the relationship with polarization and reddening, we have obtained a value for P/Av ~ 2, which may indicate that the polarization efficiency in the SMC is smaller than in the Galaxy, perhaps due to a higher turbulence and/or because of a smaller regular magnetic field. Lastly, we have estimated the energy density for the magnetic field and for the rotation and turbulent gas motions. We showed that the magnetic field is dynamically important in the SMC\'s ISM, and that the turbulent component is the largest contributor to the magnetic pressure. (AU)

FAPESP's process: 10/03802-2 - The Magnetic Field Structure of the Small Magellanic Cloud
Grantee:Aiara Lobo Gomes
Support Opportunities: Scholarships in Brazil - Master