Advanced search
Start date
Betweenand


Identification of genes involved in defense against pathogens in the CitEST databank and in macroarrays of Citrus sinensis-Guignardia citricarpa interaction

Full text
Author(s):
Simone Guidetti Gonzalez
Total Authors: 1
Document type: Doctoral Thesis
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Helaine Carrer; Antonio de Goes; Carlos Takeshi Hotta; Natalia Florêncio Martins; Marco Aurélio Takita
Advisor: Helaine Carrer
Abstract

The Brazilian citrus industry is concentrated mainly in the State of Sao Paulo which contributes with 80.4% of national production, with Brazil being a leading world producer of citrus. One of the problems facing the citrus industry is its vulnerability to pests and diseases, mainly due to low genetic diversity of the commercial varieties used, linked to the system of planting in extensive areas. A disease that is causing increasing damage to the brazilian citrus industry is the black spot of citrus caused by the fungus Guignardia citricarpa Kiely. The use of knowledge of molecular biology and biotechnological methods should be considered as an important alternative for the production of genetically modified plants expressing genes for resistance. In order to obtain citrus plants resistant to diseases it is necessary to identify genes that are related to the defense mechanisms of the plant. In an attempt to identify these genes, the general aim of this study was to identify genes in silico in the database of the Millennium CitEST Project and to perform differential expression analysis of genes involved in the defense mechanisms. More than 7600 reads were identified in the CitEST search with similarity to R genes, genes involved in HR and defense, MAPKs and SNF1. It was selected 273 reads for macroarray experiments to analysis of Citrus sinensis-Guignardia citricarpa interaction. Statistical analysis revealed that 171 genes (62.63%) showed significant differential expression at the level of 5% probability. From these, 80 showed significant differential expression higher than two fold, in which 38 genes were induced and 42 were repressed in infected tissue. Among the induced genes are MAPKs, resistance (R) genes, genes involved in hypersensitivity response (HR) and plant defense. Among the suppressed transcripts, there are four similar to peroxidases and five similar to catalases, which is expected because catalases and some peroxidases are able to remove H2O2, and so the plant produces reactive oxygen species capable of triggering the activation of defense genes. The macroarray data were validated by reverse transcription followed by quantitative real-time PCR (RT-PCRq) of 9 genes. The analysis confirmed the differential expression of 8 of them, and only one presented different result of macroarray which demonstrate the efficiency of the macroarray methodology to analyze several genes simultaneously. The genes differentially expressed in the interaction of C. sinensis x Guignardia citricarpa identified are of great importance because they are strong candidates for use in genetic transformation of plants with the objective of obtaining new varieties of plants resistant to pathogens. (AU)