Advanced search
Start date
Betweenand


Lesions in DNA caused by oxidation products of -carotene: possible biological implications

Full text
Author(s):
Sabrina de Almeida Marques
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Marisa Helena Gennari de Medeiros; Etelvino Jose Henriques Bechara; Fernando Salvador Moreno; Ana Lucia Tabet Oller do Nascimento; Luis Eduardo Soares Netto
Advisor: Marisa Helena Gennari de Medeiros
Abstract

Despite several studies performed in vitro and in population indicate a protector effect of β-carotene, the epidemiological studies \"The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study\" (ATBC) and \"The Beta-Carotene and Retinol Efficacy Trial\" (CARET) showed a relative risk for lung cancer in smokers supplemented with β-carotene. It is well known that this carotenoid is able to oxidize in high oxygen tension or in the presence of peroxides yielding to aldehydes, epoxides, and other compounds that are capable to bind to DNA. lhe possibility that β-carotene oxidation products can act as pro carcinogenic agents is under investigation. Lhese products can be activated by peroxides, ar by enzymes such as cytochromr P450, leading to DNA adducts formation. Several groups, like ours, showed the formation of DNA adducts from aldehydes or epoxides generated by endogenous or exogenous sources. We investigated here the reactions of β-carotene, and two of its oxidation products, retinal and β-apo-8\'-carotenal, with 2\'-deoxyguanosine to evaluate their DNA damaging potential. A known mutagenic adduct, 1,N2-etheno-2\'-deoxyguanosine (1 ,N2 edGuo) was isolated and characterized on the basis of its spectroscopic features. After treatment of calf thymus DNA with β-carotene or β-carotene oxidation products, significantly increased levels of the etheno adduct were detected and quantified in DNA by a sensitive LC/ESI/MS-MS technique. For comparative purposes, levels of 8-oxo7,8-dihydro-2\'-deoxyguanosine were also evaluated (8-oxodGuo). Levels of these lesions were also increased. Exposure of human lung cells (IMR 90) to the carotenoids also leads to increased levels of the two adducts. As the main noteworthy result, rats supplemented with β-carotene for 7, 30, and 180 days showed significantly higher lung DNA concentrations of the 1,N2-εdGuo adduct than those of the control group. lhe level of 8-oxodGuo was also increased after 7 and 180 days in the group supplemented with the carotenoid. Rats supplemented with β-carotene and exposed to cigarette smoke for 7 and 180 days also showed significantly increased levels of the adduct 1,N2-εdGuo when compared with the group exposed to cigarette smoke. In the same groups level of 8-oxodGuo was only increased after 180 days of treatment. These DNA lesions are confirmed mutagenic, so our data could contribute to the elucidation of the mechanisms responsible for the association between β-carotene and lung cancer in smokers. (AU)