Advanced search
Start date
Betweenand


Cooking effect and inhibition of angiotensin I converting enzyme and alpha-amylase by compound phenolics from brown rice

Full text
Author(s):
Isabel Louro Massaretto
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Ursula Maria Lanfer Marquez; Jorge Mancini Filho; José Alberto Noldin
Advisor: Ursula Maria Lanfer Marquez
Abstract

Rice (Oryza sativa L.) sustains at present about half of the world´s population. Consumption is mainly in its milled form, but brown rice has prompted further research due to bioactive compounds present in the pericarp of the grain. Some of the positive health effects have been attributed to radical scavenging activity and other biological effects such as inhibition of certain enzymes. In this study it was analyzed the contents of total, soluble and insoluble phenolic compounds of 17 different genotypes of brown rice as well as the effect of cooking. Seven genotypes had pigmented pericarp and ten were non-pigmented. In addition, the extracts from crude and cooked rice were tested for their capacity to inhibit the angiotensin I (ACE) converting enzyme and -amylase activities. Pigmented rice genotypes were highest in phenolic compounds, with an average of about 4200 µg ferulic acid eq./g, due to their high contents of soluble phenolics, mostly represented by anthocyanins and proanthocyanidins. Insoluble phenolics, represented mainly by phenolic acids, contributed with only 20% of total phenolics. Non-pigmented rice showed overall lower levels of phenolics. The mean content was about 1000 µg ferulic acid eq./g, almost equally distributed between the soluble and insoluble fractions. Levels of total phenolics were significantly reduced by rice cooking and proportions between soluble and insoluble fractions were altered. These alterations were more pronounced for pigmented rice, and soluble phenolics were the most affected. However, after cooking, black rice was the only that maintained the original proportion between soluble and insoluble phenolics. Alpha-amylase was not significantly inhibited by phenolics after cooking. Pigmented rice showed a potent inhibition of ACE, much higher than of non-pigmented rice, which seems to indicate that color of the pericarp is an important factor. Nevertheless, different profiles of phenolic compounds may explain why individual pigmented genotypes with similar phenolic levels can have different ACE inhibiting capacities. Rice cooking reduced significantly the inhibition of ACE by phenolics, which feature was more pronounced in pigmented rice due to the reduction of soluble phenolics and the activity of individual phenolics. Among pigmented rice, the highest soluble phenolic content and the most potent ACE inhibition after cooking was observed for black rice turning it the most distinguished notable. (AU)