Genomic analysis of the cervical carcinoma cells treated with the anti-inflammator...
Study of the molecular mechanisms by protein SET with impact on tumorigenesis and ...
Modulation study of anti-inflammatory protein Annexin A1 in cervical cancer
![]() | |
Author(s): |
Erico Tosoni Costa
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | São Paulo. |
Institution: | Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ) |
Defense date: | 2005-08-03 |
Examining board members: |
Hugo Aguirre Armelin;
Roger Chammas;
Alicia Juliana Kowaltowski;
Robert Schumacher;
Chao Yun Irene Yan
|
Advisor: | Hugo Aguirre Armelin |
Abstract | |
The purpose of this work is to study the role of FGF2 (fibroblast growth factor-2) in the cell cycle control of mammalian cells. Our model of study is the lineage Y1, derived from a murine adrenocortical functional tumor, which presents the proto-oncogene c-ki-ras amplified and, as a consequence, exhibits enhanced expression of the c-Ki-Ras protein in its active forms (c-Ki-Ras-GTP). Arrested Y1 cells in the G0/G1 interface of the cell cycle are promptly responsive to FGF2 treatments, responding with progression through G0/G1 → S, but surprisingly, under the same conditions, FGF2 elicits a strong death response in cultured or in vivo cells, blocking the progress in the cell cycle after S phase entry. Under low c-Ki-Ras-GTP conditions, Y1 cells respond to FGF2 with enhanced proliferation, showing that death induction is related to c-Ki-Ras-GTP levels. Moreover, the Y1 population is heterogeneous, with a majority of FGF2-sensitive cells, and a minority of cells that can be positively selected in the presence of FGF2. These FGF2-resistant cells exhibit a proliferative response to FGF2 and phenotypic traits close to those observed in normal cells, even though the mechanisms of resistance are independent of c-Ki-Ras-GTP decrease. Comparable to that, normal lineages 3T3 display a mitogenic response to FGF2 that is substituted by a death response after their transformation with the oncogene EJ-Ras. The collection of our results associated with a review in the bibliography lead us to suggest a new biological effect of FGF2: enhanced protection against tumors originated by oncogenes. (AU) |