Advanced search
Start date
Betweenand


Computational studies of reagents, intermediates and activated complexes of hydrolysis reactions

Full text
Author(s):
Karina Shimizu
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
João Pedro Simon Farah; Florângela Maionchi; José Manuel Riveros
Advisor: João Pedro Simon Farah
Abstract

In addition to their intrinsic mechanistic interest, hydrolysis reactions of carbonyl compounds in aqueous media exhibit the interesting peculiarity of direct reaction with the solvent itself, i.e., water. In the present work, we have investigated a representative example of one of these \"water reactions\" (Robertson, 1967; Johnson, 1967), the hydrolysis of carbonates, via quantum chemical ca1culation of the free energies of transfer of the reagents (R), the transition state (TS) and the products (P) from the gas phase to water. A model study of the solvation of R and TS points to a correlation between reactivity and molecular structure. Results using the \"super-molecule\" approach show greater agreement with experiment than solvation ca1culations on the isolated molecule and imply that the solvation of the TS is more effective than that of R in increasing reactivity. A more detailed study of the structures of R, TS and P for diphenyl- (DPC) and bis(2,4-dinitrophenyl)carbonates (DNPC) in acetonitrile/water mixtures suggests the existence of two possible types of hydrogen bonds, i.e., between oxygen of the water c1uster and an aromatic ring hydrogen (DPC and DNPC) or, in the case of DNPC, between the protons of water and the oxygens of the nitro group of the second aromatic ring. The decrease in conformational degrees of freedom reI ative to the gas phase provoked by these hydrogen bonds exposes one of the hemispheres of the carbonyl group to attack by water, resulting in an entropic acceleration of the reaction. The electronic effects on the hydrogen bonds are in line with the greater acidity of the aromatic ring hydrogens of DNPC relative to those of DNP. In DNPC, there is a compensation effect, with very little alteration of the electron density on the carbonyl carbon, while in DPC a sum of effects increases the electron density on the carbonyl carbon, in line with the known lower reactivity of the latter. This work points to the relative success of the semi-empirical PM3 method combined with relatively simple solvation models (Cramer & Truhlar, 1991) for ca1culating free energies of transfer involving acetonitrile/water mixtures in the water mole fraction range from 0.40-1.00. (AU)

FAPESP's process: 99/00011-3 - Calculations of solvatation of intermediate and complex reagents activated by hydrolysis reactions
Grantee:Karina Shimizu
Support Opportunities: Scholarships in Brazil - Master