Advanced search
Start date
Betweenand


Phenylephrine-induced contractile response is modulated by hydrogen peroxide in renal hypertensive rat aorta

Full text
Author(s):
Bruno Rodrigues Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Lusiane Maria Bendhack; Rita de Cassia Aleixo Tostes Passaglia; André Sampaio Pupo; Luciana Venturini Rossoni; Carlos Renato Tirapelli
Advisor: Lusiane Maria Bendhack
Abstract

The endothelial dysfunction present in cardiovascular diseases, such as hypertension, is characterized by reduced endothelium-dependent vasodilator response and/or increased contractile response. The imbalance in the production of endothelium-derived relaxing factors, such as nitric oxide (NO) and prostacyclin (PGI2), and contractile factors, such as thromboxane A2 (TXA2) can contribute to endothelial dysfunction. Endothelial dysfunction has also been associated to increased generation of reactive oxygen species (ROS). Since the sympathetic nervous system plays an important role on vascular tone control, the aim of this study was to evaluate the role of endothelium and ROS, superoxide anion (O2-) and hydrogen peroxide (H2O2), involved in the 1-adrenergic agonist phenylephrine induced contractile response on endothelial dysfunction in renovascular hypertension. Furthermore, we evaluated the endothelium and ROS role on the vasodilator effect induced by the NO donor AuNPs-{Ru-4PySH}n in normotensive (2K) and hypertensive (2K-1C) rat aortas, contracted by phenylephrine (PE). Accordingly, concentration-effect curves to PE and AuNPs-{Ru-4PySH}n were performed in endothelium-intact (E+) and endothelium-denuded aorta (E-) from 2K and 2K-1C rat in the absence (Control) or after incubation with the O2- scavenger Tiron (0.1 and 1 mmol/L) or Catalase (30, 90, 150 and 300 U/mL). Concentrationeffect curves to PE were performed in the presence of inhibitors of endothelial Nitric Oxide Synthase (NOS) and Cyclooxygenase (COX). Protein expression of endothelial NOS (eNOS) and COX was evaluated by Western blot. The production of cyclic GMP, TXA2 and PGI2 was quantified by Elisa Kit Imuno enzyme Assay. NO and EROs production was evaluated by flow citometry using the fluorescence probes DAF-2DA and DHE, respectively. The H2O2 production was evaluated by Kit Amplex Red Assay. Our results indicate that the contractile response induced by PE is reduced in 2K-1C E+ aorta as compared to 2K E+ on 1.5 g of rest tension. This reduced response was due to the high production of H2O2 and hyperactivity of eNOS in 2K-1C E+. Although COX activity is increased in 2K-1C rat aorta, the vasodilator effect to NO attenuates the contractile response induced by TXA2 in 2K-1C E+ on 1.5 g but not 3.0 g of rest tension. The H2O2 production potentiated the vasodilator effect induced by AuNPs-{Ru-4PySH}n in 2K-1C E- aorta and the hyperactivity of eNOS reduced its effect in 2K-1C E+ aorta. (AU)

FAPESP's process: 09/14219-9 - Cellular mechanism involved in endothelial dysfunction and the effects of the nitric oxide donor AuNPs-{Ru-4PySH}n in vessels of renal hypertensive rats
Grantee:Bruno Rodrigues Silva
Support Opportunities: Scholarships in Brazil - Doctorate