Advanced search
Start date
Betweenand


Oxidation of melatonin and formation of N1-acetyl-N2-formyl-5-methoxykynuramine: possible biological effects

Full text
Author(s):
Sueli de Oliveira Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Ana Campa; Ligia Ferreira Gomes; Marisa Helena Gennari de Medeiros; Luis Fernando Bicudo Pereira Costa Rosa; Heraldo Possolo de Souza
Advisor: Ana Campa
Abstract

In a previous study we described that activated neutrophils are able to oxidize the pineal hormone melatonin to N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) in a reaction dependent on myeloperoxidase and superoxide anion. Here we followed the formation of AFMK and its deformylated product N1-acetil-5-metoxiquinuramina (AMK) when neutrophils were activated by different stimuli. The biological significance of this reaction has been one of our research interests, therefore we study the effect of melatonin, AFMK and AMK on the HOCl formation, on the release of pro-inflammatory cytokines (TNFα- and IL-8) and on the apoptosis process. Melatonin caused an almost complete inhibition of HOCl formation at concentrations up to 0.05 mM. Although less effective, AMK also inhibited HOCl formation, while AFMK had no effect. Additionally all the compounds assayed efficiently inhibited the production of TNF-α and IL-8 by activated neutrophils. Moreover, the inhibitory activity of AFMK was stronger than that of melatonin and could be observed already at 1µM. A significant inhibition of neutrophil death (approximately 25 %) was triggered by AFMK and AMK (1 mM) but not by melatonin. Our data suggest that neutrophils are an important target for AFMK and that the route of melatonin metabolism may be useful in controlling the intensity of the inflammatory process by the consumption of reactive oxygen species, control of cytokine production and neutrophils life span. These findings, associated with the efficient synthesis of melatonin by activated-mononuclear cells and the presence of reactive oxygen species in the inflammatory focus, led us to verify if inflammation triggers the oxidation of melatonin in vivo. In this way we analyzed the cerebrospinal fluid (CSF) of patients with meningitis. AFMK was detected in 16 CSF from 20 samples of patients with viral meningitis and in none of 8 control samples. From the 16 samples in which AFMK was detected, it was quantified in 6 (at the concentration range of 50 500 nM). We also analyzed the correlation between the presences of AFMK with some inflammatory parameters like: cellularity and concentration of total proteins, TNF-α, IL-8 and IL-1β. We verify that all these parameters were decreased in samples in which AFMK was in higher concentrations. Our results show that, at least part of the antiinflammatory effects described for melatonin is indeed caused by its oxidation product. These findings add a new insight in the comprehension of the biological role of melatonin and its oxidation products in immunomodulation and during inflammation. (AU)