Advanced search
Start date
Betweenand


Phase transitions in side-chain liquid-cristaline polmers

Full text
Author(s):
Marcela Hernández Jiménez
Total Authors: 1
Document type: Doctoral Thesis
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Instituto de Física Gleb Wataghin
Defense date:
Examining board members:
Harry Westfahl Junior; A. M Figueiredo Neto; Nádya Pesce da Silveira; Mário Noboru Tamashiro; Maurice de Koning
Advisor: Harry Westfahl Junior
Abstract

Polymeric liquid crystals are materials that combine properties of both polymers and liquid crystals. These polymers can be thought as block copolymers made of ftexible and rigid molecular blocks. As in flexible block copolymers, the macrophase separation originated from the repulsion between different blocks is frustrated by the connectivity constraint imposed by the architecture of the polymer. This frustration results in the formation of alternated microdomains, rich in the fiexible or rigid component (microphase separation). In Side-Chain Liquid-Crystalline Polymers (SCLCP) the mesogenic units are periodically attached to a ftexible polymer (backbone) through a polymeric chain called spacer. Because of the coupling effect of the spacer, there is a competition between the ordering of the mesogens in the side groups and the conformational entropy of the backbone. In this work we propose a microscopíc model for SCLCP that takes into account the competition between the isotropic excluded volume interactions and the anisotropic Maier-Saupe interactions. The flexible blocks are treated as ideal Gaussian chains while the mesogens are considered as rigid mesogenic rods. Using an series expansion on the arder parameters, known as Random Phase Approximation (RPA), we calculate the free energy functional for the SCLCP as a function of two order parameters, one related to density ftuctuations and another related to orientational fluctuations. We show that the stability of the isotropic pha..,e against these fluctuations depends on the relative strength between the Flory-Huggins and the Maier-Saupe interactions. Three different thermodynamic phases are found within this model. The first one is a nematic phase similar to the nematic phase of low molar mass liquid crystals. The second one is a phase with modulated density without mesogen orientation, being this a paranematic phase. The third phase is characterized by both density modulation and orientational order, suggesting the formation of a smectic phase. In a more detailed analysis of the nematic-smectic transition, we studied the stability of the nematic phase against the formation of smectic A and smectic C phases. This analysis was performed for different values of the geometrical parameters of the molecule, such as degree of polymerization, length of the spacer, length of the meso.gen and spacing between side groups. The results obtained are in qualitative agreement with experimental data found in literature (AU)