Advanced search
Start date
Betweenand


Cholinergic function reduction effect of pulmonary mechanics and pulmonary histopathology acute inflammation model of experimental induced by LPS in mice genetically modified

Full text
Author(s):
Nathalia Montouro Pinheiro
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Carla Máximo Prado; Debora Estadella; Wothan Tavares de Lima
Advisor: Carla Máximo Prado
Abstract

Acute lung injury (ALI) is characterized by acute lung inflammation with recruitment of polymorphonuclear and release of proinflammatory mediators. It is a severe condition since leads to death 40% of the cases. Several studies have elucidated the pathophysiology of ALI, however the treatment is still unsatisfactory. The anti-inflammatory cholinergic system was described in the lung and is related to a vagal nerve reflex that inhibits the release of inflammatory cytokines by the action o ACh on nicotinic receptors. Our hypothesis is that the VAChT reduction, which is related to the deficit in the release of ACh, modulates the pulmonary inflammatory response in a model of LPS. Aim: 1. To assess whether VAChT deficiency modulates the pulmonary response in genetically modified animals; 2. Assess whether cholinergic deficiency induced reduction VAChT is involved in pulmonary response to LPS and elucidate some mechanisms involved; 3. To evaluate the therapeutic potential of PNU, an agonist alfa7nAChR, in functional and histological changes in C57BL6 mice with LPA. Methods: Mutant genetically modified male mice (VAChT KDHOM) or wild (WT) and C57BL/6 were used. First, we evaluated lung function and lung histopathology in VAChT KDHOM animals. After, WT animals and VAChT KDHOM received intranasal instillation of LPS or saline and the inflammatory response was assessed 1.5 hours to 72 hours. Moreover, the pulmonary response was evaluated in WT and VAChT KDHOM after instillation of LPS intraperitoneally. Finally, C57BL6 instilled with intranasal LPS received prior or post-treatment with PNU, an alfa7 nicotinic receptor agonist. Results: Mutant animals had higher number of cells recovered in brochoalveolar lavage (BAL) and increased pro-inflammatory cytokines, peribronchial edema and worsening of lung function. Still, there was an increase of NF_kB expression and reduction of JAK2. The VAChT deficiency induced increase in inflammatory cells in animals receiving LPS only 1.5h after the LPS instilation, and the values were similar to WT in 24 and 72 hours. In WT mice, the stimulation of the nicotinic receptor improves inflammation, while the stimulation of muscarinic receptors appears to contribute to the worsening of the pulmonary inflammatory response. The effects of PNU seem to depend on the intact cholinergic pathway, since this drug had no effects on mutant animals. However, treatment with PNU in C57BL6 reduced pulmonar inflammation, cytokine production, collagen deposition in lung tissue and the levels of MMP-2, MMP-9 and TIMP-1, improving pulmonary function. These effects appear to be associated with reduced profile M1 macrophages and the inhibition of NF-kB. Conclusion: These data clearly demonstrate that the anti-inflammatory cholinergic system is involved in the control of lung inflammatory response, both to maintain the lung homeostasis or in the early stages of the development of ALI. Finally, it is clear that the stimulation of nicotinic receptors has great potential as a therapeutic target to be explored in ARDS (AU)

FAPESP's process: 13/02881-4 - Effects of cholinergic function deficiency on pulmonary mechanics and histopathology in an experimental model of acute inflammation induced by LPS instillation in genetically modified mice
Grantee:Nathalia Montouro Pinheiro Menegasso
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)